CINTA 作业八

1.手动计算 200 0 2019 ( m o d   221 ) 2000^{2019} (mod \ 221) 20002019(mod 221),不允许使用电脑或者其他电子设备。

对于原题目 200 0 2019 2000^{2019} 20002019 (mod 221),我们由 CRT 可以将问题转换成求解同余方程组:

{ x ≡ 200 0 2019 ( m o d   13 ) x ≡ 200 0 2019 ( m o d   17 ) \left\{\begin{matrix}x \equiv 2000^{2019} (mod \ 13)\\x \equiv 2000^{2019} (mod \ 17)\end{matrix}\right. {x20002019(mod 13)x20002019(mod 17)

由费尔马小定理,我们可以把原同余方程组化简成:

{ x ≡ 200 0 3 ≡ 1 1 3 ( m o d   13 ) x ≡ 200 0 3 ≡ 1 1 3 ( m o d   17 ) \left\{\begin{matrix}x \equiv 2000^{3} \equiv 11^3 (mod \ 13)\\x \equiv 2000^{3} \equiv 11^3 (mod \ 17)\end{matrix}\right. {x20003113(mod 13)x20003113(mod 17)

最终我们得到:

{ x ≡ 3 ( m o d   13 ) x ≡ 5 ( m o d   17 ) \left\{\begin{matrix}x \equiv 3 (mod \ 13)\\x \equiv 5 (mod \ 17)\end{matrix}\right. {x3(mod 13)x5(mod 17)

令 a = 3, b = 5, p = 13, q = 17, n = pq = 221,

由 CRT 我们令 x 的解 y = a q q − 1 + b p p − 1 y = aqq^{-1} + bpp^{-1} y=aqq1+bpp1

因为 p 与 q 互素,利用 egcd 我们可以得到这样一个线性方程组 10 ∗ 17 + 4 ∗ 13 = 1 10*17+4*13 = 1 1017+413=1

那么有 y = 3 ∗ 10 ∗ 17 + 5 ∗ 4 ∗ 13 = 5 ( m o d   n ) y = 3*10*17+5*4*13 = 5 (mod \ n) y=31017+5413=5(mod n)

最终我们可以得到答案为 5。

2.运用 CRT 求解:

{ x ≡ 8 ( m o d   11 ) x ≡ 3 ( m o d   19 ) \left\{ \begin{matrix} x \equiv 8 (mod \ 11)\\ x \equiv 3 (mod \ 19) \end{matrix} \right. {x8(mod 11)x3(mod 19)

解答:

令 a = 8 b = 3, p = 11, q = 19, n = pq = 209,

由 CRT 我们令 x 的解 y = a q q − 1 + b p p − 1 y = aqq^{-1} + bpp^{-1} y=aqq1+bpp1

因为 p 与 q 互素,利用 egcd 我们可以得到这样一个线性方程组 19 ∗ 7 + 11 ∗ 7 = 1 19*7+11*7= 1 197+117=1

那么有 y = 8 ∗ 19 ∗ 7 + 3 ∗ 11 ∗ 7 = 41 ( m o d   n ) y = 8*19*7+3*11*7 = 41 (mod \ n) y=8197+3117=41(mod n)

最终我们可以得到答案为 41。

3.运用 CRT 求解:

{ x ≡ 1 ( m o d   5 ) x ≡ 2 ( m o d   7 ) x ≡ 3 ( m o d   9 ) x ≡ 4 ( m o d   11 ) \left\{ \begin{matrix} x \equiv 1 (mod \ 5)\\ x \equiv 2 (mod \ 7)\\ x \equiv 3 (mod \ 9)\\ x \equiv 4 (mod \ 11)\\ \end{matrix} \right. x1(mod 5)x2(mod 7)x3(mod 9)x4(mod 11)

解答:

利用定理 10.2 我们或许可以利用计算机高效地计算出结果,但对于人工计算来说还是很复杂,不妨把同余方程组分成上下两个同余方程组,即等同于如下形式:
{ x ≡ 1 ( m o d   5 ) x ≡ 2 ( m o d   7 ) { x ≡ 3 ( m o d   9 ) x ≡ 4 ( m o d   11 ) \left\{ \begin{matrix} x \equiv 1 (mod \ 5)\\ x \equiv 2 (mod \ 7) \end{matrix} \right. \\ \left\{ \begin{matrix} x \equiv 3 (mod \ 9)\\ x \equiv 4 (mod \ 11) \end{matrix} \right. {x1(mod 5)x2(mod 7){x3(mod 9)x4(mod 11)
由 CRT 定理和 egcd 我们可以得出这两个同余方程组的解为

x ≡ 16   ( m o d   35 ) ,   x ≡ 46   ( m o d   99 ) x \equiv 16 \ (mod \ 35), \ x \equiv 46 \ (mod \ 99) x16 (mod 35), x46 (mod 99),

联立两个同余方程组,再利用 CRT 和 egcd 我们可以得出结果

x ≡ 1731   ( m o d   3465 ) x \equiv 1731 \ (mod \ 3465) x1731 (mod 3465)

4.设 p 和 q 为互素的正整数, a > 0 为一个正整数,如果

{ x ≡ a ( m o d   p ) x ≡ a ( m o d   q ) \left\{ \begin{matrix} x \equiv a (mod \ p)\\ x \equiv a (mod \ q) \end{matrix} \right. {xa(mod p)xa(mod q)

x 模 pq 等于什么?为什么?

我们可以从第一个同余式得到, ∃ k ∈ Z \exist k \in Z kZ,使得 x = kp + a。

同样,从第二个同余式会有 ∃ t ∈ Z \exist t \in Z tZ,使得 x = tq + a。

那么两式相减会有 kp - tq = 0;由于 p 与 q 互素,那么该等式成立,也就意味着 ∃ r 1 , r 2 ∈ N \exist r_1,r_2 \in \N r1,r2N,使 k = r 1 ∗ q , t = r 2 ∗ p k = r_1*q,t = r_2*p k=r1q,t=r2p 成立。

由此我们可以得到 x = k r 1 q p + a x = kr_1qp+a x=kr1qp+a 或者 x = k r 1 q p + a x = kr_1qp+a x=kr1qp+a,故 x 模 pq 等于 a。

5.设 p 和 q 是不同的两个素数,请证明 p q − 1 + q p − 1 ≡ 1 ( m o d   p q ) p^{q-1} + q^{p-1} \equiv 1(mod \ pq) pq1+qp11(mod pq)

我们不妨令 x = p q − 1 + q p − 1 x = p^{q-1} + q^{p-1} x=pq1+qp1,那么由费尔马小定理和 CRT,我们可以从这样的角度看问题:

{ x ≡ 1 ( m o d   p ) x ≡ 1 ( m o d   q ) \left\{\begin{matrix}x \equiv 1(mod \ p) \\ x \equiv 1(mod \ q)\end{matrix}\right. {x1(mod p)x1(mod q)

从题目 4 我们可以轻松地得出结果 1。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值