微积分-积分应用5.5(函数的平均值)

很容易计算有限多个数字 y 1 , y 2 , … , y n y_1, y_2, \dots, y_n y1,y2,,yn 的平均值:

y ave = y 1 + y 2 + ⋯ + y n n y_{\text{ave}} = \frac{y_1 + y_2 + \cdots + y_n}{n} yave=ny1+y2++yn

但是,如果可以进行无限多次的温度读取,如何计算一天中的平均温度呢?图 1 显示了温度函数 T ( t ) T(t) T(t) 的图像,其中 t t t 以小时为单位, T T T 以摄氏度为单位,我们猜测温度的平均值为 T ave T_{\text{ave}} Tave
在这里插入图片描述

一般来说,让我们尝试计算函数 y = f ( x ) y = f(x) y=f(x) 在区间 a ≤ x ≤ b a \leq x \leq b axb 上的平均值。我们从将区间 [ a , b ] [a, b] [a,b] 分成 n n n 个等分的小区间开始,每个小区间的长度为 Δ x = ( b − a ) / n \Delta x = (b - a) / n Δx=(ba)/n。然后我们在每个连续的小区间内选择点 x 1 ∗ , … , x n ∗ x_1^*, \dots, x_n^* x1,,xn,并计算数值 f ( x 1 ∗ ) , … , f ( x n ∗ ) f(x_1^*), \dots, f(x_n^*) f(x1),,f(xn) 的平均值:

f ( x 1 ∗ ) + ⋯ + f ( x n ∗ ) n \frac{f(x_1^*) + \cdots + f(x_n^*)}{n} nf(x1)++f(xn)

(例如,如果 f f f 表示温度函数且 (n = 24),这意味着我们每小时读取一次温度,然后取平均值。)由于 Δ x = ( b − a ) / n \Delta x = (b - a) / n Δx=(ba)/n,我们可以写出 n = ( b − a ) / Δ x n = (b - a) / \Delta x n=(ba)x,于是平均值变为:

f ( x 1 ∗ ) + ⋯ + f ( x n ∗ ) b − a Δ x = 1 b − a [ f ( x 1 ∗ ) + ⋯ + f ( x n ∗ ) ] Δ x = 1 b − a [ f ( x 1 ∗ ) Δ x + ⋯ + f ( x n ∗ ) Δ x ] = 1 b − a ∑ i = 1 n f ( x i ∗ ) Δ x \begin{align*} \frac{f(x_1^*) + \cdots + f(x_n^*)}{\frac{b - a}{\Delta x}} &= \frac{1}{b - a} [f(x_1^*) + \cdots + f(x_n^*)] \Delta x\\ &= \frac{1}{b - a} [f(x_1^*)\Delta x + \cdots + f(x_n^*)\Delta x] \\ &= \frac{1}{b - a} \sum_{i=1}^{n} f(x_i^*) \Delta x\\ \end{align*} Δxbaf(x1)++f(xn)=ba1[f(x1)++f(xn)]Δx=ba1[f(x1)Δx++f(xn)Δx]=ba1i=1nf(xi)Δx

如果我们让 n n n 增大,那么我们将计算大量的密集分布的值的平均值。(例如,我们可以每分钟甚至每秒钟读取温度。)极限值为

lim ⁡ n → ∞ 1 b − a ∑ i = 1 n f ( x i ∗ ) Δ x = 1 b − a ∫ a b f ( x )   d x \lim_{n \to \infty} \frac{1}{b - a} \sum_{i=1}^{n} f(x_i^*) \Delta x = \frac{1}{b - a} \int_a^b f(x) \, dx nlimba1i=1nf(xi)Δx=ba1abf(x)dx

这是根据定积分的定义得到的结果。

因此,我们定义函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上的平均值为

f ave = 1 b − a ∫ a b f ( x )   d x f_{\text{ave}} = \frac{1}{b - a} \int_a^b f(x) \, dx fave=ba1abf(x)dx

例1 求函数 f ( x ) = 1 + x 2 f(x) = 1 + x^2 f(x)=1+x2 在区间 [ − 1 , 2 ] [-1, 2] [1,2] 上的平均值。

解答 a = − 1 a = -1 a=1 b = 2 b = 2 b=2,我们有:

f ave = 1 b − a ∫ a b f ( x )   d x = 1 2 − ( − 1 ) ∫ − 1 2 ( 1 + x 2 )   d x = 1 3 ∫ − 1 2 ( 1 + x 2 )   d x = 1 3 [ x + x 3 3 ] − 1 2 = 2 \begin{align*} f_{\text{ave}} &= \frac{1}{b - a} \int_a^b f(x) \, dx = \frac{1}{2 - (-1)} \int_{-1}^2 (1 + x^2) \, dx = \frac{1}{3} \int_{-1}^2 (1 + x^2) \, dx \\ &= \frac{1}{3} \left[ x + \frac{x^3}{3} \right]_{-1}^2 = 2 \end{align*} fave=ba1abf(x)dx=2(1)112(1+x2)dx=3112(1+x2)dx=31[x+3x3]12=2

如果 T ( t ) T(t) T(t) 表示时刻 t t t 的温度,我们可能会想知道是否有某个特定时间点,此时的温度等于平均温度。对于图 1 中显示的温度函数,我们看到有两个这样的时间点——一个接近中午前,另一个接近午夜之前。一般来说,是否存在某个 c c c 点,使得函数 f f f 的值恰好等于其平均值,即 f ( c ) = f ave f(c) = f_{\text{ave}} f(c)=fave?以下定理表明,对于连续函数来说,这种情况确实存在。

积分形式的均值定理 如果函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上连续,那么存在一个 c ∈ [ a , b ] c \in [a, b] c[a,b],使得
f ( c ) = f ave = 1 b − a ∫ a b f ( x )   d x f(c) = f_{\text{ave}} = \frac{1}{b - a} \int_a^b f(x) \, dx f(c)=fave=ba1abf(x)dx
即:
∫ a b f ( x )   d x = f ( c ) ⋅ ( b − a ) \int_a^b f(x) \, dx = f(c) \cdot (b - a) abf(x)dx=f(c)(ba)

积分形式的均值定理是微分均值定理和微积分基本定理的一个推论。

几何上,积分均值定理的解释是,对于正函数 f f f,存在一个 c c c 值,使得以 [ a , b ] [a, b] [a,b] 为底、 f ( c ) f(c) f(c) 为高的矩形的面积等于从 a a a b b b 下方图形所覆盖的区域面积(如图 2所示)。

在这里插入图片描述

例2 由于 f ( x ) = 1 + x 2 f(x) = 1 + x^2 f(x)=1+x2 在区间 [ − 1 , 2 ] [-1, 2] [1,2] 上是连续的,积分形式的均值定理表明,存在一个 c ∈ [ − 1 , 2 ] c \in [-1, 2] c[1,2] 使得

∫ − 1 2 ( 1 + x 2 )   d x = f ( c ) [ 2 − ( − 1 ) ] \int_{-1}^{2} (1 + x^2) \, dx = f(c) [2 - (-1)] 12(1+x2)dx=f(c)[2(1)]

在这个特定的例子中,我们可以明确地找到 c c c。从例 1 中我们知道 f ave = 2 f_{\text{ave}} = 2 fave=2,因此 c c c 满足

f ( c ) = f ave = 2 f(c) = f_{\text{ave}} = 2 f(c)=fave=2

因此:

1 + c 2 = 2 所以 c 2 = 1 1 + c^2 = 2 \quad \text{所以} \quad c^2 = 1 1+c2=2所以c2=1

因此,在这种情况下,存在两个满足积分均值定理的 c c c 值,分别是 c = ± 1 c = \pm 1 c=±1 在区间 [ − 1 , 2 ] [-1, 2] [1,2] 内。

例 1 和例 2 如图 3 所示。
在这里插入图片描述

例3 证明一辆汽车在时间区间 [ t 1 , t 2 ] [t_1, t_2] [t1,t2] 上的平均速度与其在旅程中速度的平均值是相同的。

解答 如果 s ( t ) s(t) s(t) 是汽车在时间 t t t 时的位移,根据定义,汽车在该时间区间上的平均速度为:

Δ s / Δ t = s ( t 2 ) − s ( t 1 ) t 2 − t 1 \Delta s / \Delta t = \frac{s(t_2) - s(t_1)}{t_2 - t_1} Δst=t2t1s(t2)s(t1)

另一方面,速度函数在该时间区间上的平均值为:

v ave = 1 t 2 − t 1 ∫ t 1 t 2 v ( t )   d t = 1 t 2 − t 1 ∫ t 1 t 2 s ′ ( t )   d t = 1 t 2 − t 1 [ s ( t 2 ) − s ( t 1 ) ] = v ave = s ( t 2 ) − s ( t 1 ) t 2 − t 1 = average velocity \begin{align*} v_{\text{ave}} &= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v(t) \, dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} s'(t) \, dt\\ &= \frac{1}{t_2 - t_1} [s(t_2) - s(t_1)]\\ &=v_{\text{ave}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} = \text{average velocity} \end{align*} vave=t2t11t1t2v(t)dt=t2t11t1t2s(t)dt=t2t11[s(t2)s(t1)]=vave=t2t1s(t2)s(t1)=average velocity

这证明了平均速度与其速度的平均值相同。

  • 11
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: x-cube-mcsdk-ful 5.5是一个针对STMicroelectronics设备的软件包。该软件包提供了一系列的软件硬件开发工具,帮助开发人员在STM32微控制器平台上进行快速开发和应用实现。此外,x-cube-mcsdk-ful 5.5还包含了一个完整的云服务解决方案,可以集成自定义的传感器、控制器和其他硬件设备,将数据传输到云端进行存储和分析。该软件包支持基于RESTful API和MQTT协议的安全通信,并提供了丰富的图表和报告等功能,方便用户进行数据分析和可视化。x-cube-mcsdk-ful 5.5还包含了一些实用的功能模块,例如OTA升级、实时定位、远程配置和设备管理等。此外,该软件包还支持多种硬件平台和开发环境,例如STM32CubeIDE、Keil MDK、IAR EWARM等。总之,x-cube-mcsdk-ful 5.5是一个全面的软件套件,可以帮助开发人员快速高效地实现STM32微控制器的各种应用场景。 ### 回答2: x-cube-mcsdk-ful 5.5是一个软件开发工具包,它包含了开发物联网设备所需的各种软件组件和工具。其中的MCU(Microcontroller Unit)软件包提供了物联网设备所需的各种传感器和执行器的驱动程序,同时还提供了与云端通信所需的网络协议栈。此外,该软件开发工具包还提供了各种调试工具和支持设备云平台接入的SDK,使得开发者能够在短时间内将物联网设备顺利接入到设备云平台上,实现设备监控和远程控制等功能。总之,x-cube-mcsdk-ful 5.5是一款专业的物联网设备开发工具包,它为开发者提供了整套完善的软件组件和工具,以助力用户快速开发高质量的物联网设备,满足不同应用场景的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值