大数据学习十三天(hadhoop基础2)

一: MapReduce概述(了解)

MapReduce是hadoop三大组件之一,是分布式计算组件

Map阶段 : 将数据拆分到不同的服务器后执行Maptask任务,得到一个中间结果

Reduce阶段 : 将Maptask执行的结果进行汇总,按照Reducetask的计算 规则获得一个唯一的结果

我们在MapReduce计算框架的使用过程中,我们只需要关注,Map任务的规则,和Reduce任务的规则即可

MapReduce的核心思想是: 先分(Map)再和(Reduce)

思考: MapReduce中hadoop服务帮我们完成了什么???

我们自己完成的是map和Reduce任务的规则制定.

Hadoop 完成了:

  1. 数据的拆分多个部分分别指定不同服务进行计算

  2. 申请计算资源

  3. 读取计算数据

  4. reduce汇总map结果

  5. 写入计算结果(hdfs)

  6. ......

Hadoop的出现大大简化了大数据的开发工作,我们只需要关注20%的业务计算,而80%的技术问题,都由hadoop 帮我们解决了.

思考: 所有的计算任务都可以使用mapreduce任务解决么? 什么样的任务可以使用mapreduce任务处理.

  1. 一个复杂任务,可以拆分为多个简单任务.

  2. 任务之间没有任何依赖关系,可以同时执行

  3. 结果之间没有依赖关系,可以随机合并.

将文件数据上传hdfs的/input目录下

cd /export/server/hadoop/share/hadoop/mapreduce
​
hadoop jar hadoop-mapreduce-examples-3.3.0.jar wordcount  /input /output

二、YARN概述(了解)

yarn是一个分布式资源调度平台

yarn的作用是给mapreduce提供计算资源

yarn中都调度了哪些集群资源?

内存资源和cpu资源

yarn中资源调度的目的是什么?

提高集群资源的利用率,防止部分程序恶意占用资源, 采用申请制,申请多少资源就使用多少资源

yarn是hadoop生态圈发展的前提:

yarn不光可以对于hadoop平台的MR任务进行资源调度,可以对于所有的基于yarn的规则申请资源的服务进行资源调度,也就保证了我们基于hadoop组件运行的其他大数据服务可以获得合理的资源分配.

除了MapReduce,我们的Yarn还支持多种计算引擎 spark,flink等..

三、YARN架构(重要)

Yarn是标准的主从架构集群

主角色ResourceManager: 统一管理和分配集群资源,监控每一个NodeManager的健康状况.

从角色NodeManager: 统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值