名校AI课推荐 | UC Berkeley《人工智能导论》

本文推荐了UC Berkeley的CS188《人工智能导论》课程,该课程深入讲解了AI的基础,特别是强化学习,结合深度学习,为复杂系统的感知决策问题提供解决方案。课程内容丰富,包括视频、课件和实践项目,适合AI初学者。主讲教师Pieter Abbeel和Dan Klein在AI领域有深厚背景,课程难度逐渐提升,以《吃豆人》游戏为例进行编程练习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习具备强感知能力但缺乏一定的决策能力,强化学习具备决策能力但对感知问题束手无策,因此将两者结合起来可以达到优势互补的效果,为复杂系统的感知决策问题提供了解决思路。

今天我们推荐这样一门课程——UC Berkeley的 CS188《人工智能导论》(Introduction to Artificial Intelligence)。课程主要介绍了AI的基础知识,尤其是强化学习方面,讲解非常详细,覆盖面比较全面,学习资料也很丰富,包括了课程的全套视频、课件PPT、课后学习资料、Homework、配套的Project,该视频全部内容已经由 矩池云 进行翻译,对AI新手来说非常友好。

课程全套视频

【中英双语字幕】伯克利CS188《人工智能导论》by Nikita Kitaev

课程介绍

根据官方介绍,"该课程介绍了智能计算机系统设计的基本思想和技术,具体侧重于统计和决策理论建模方法的相关内容。"

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值