Count Subrectangles

题目链接
题目大意:
给出两组整数数组a和b,长度分别为n和m,并且只由0和1构成,存在这么一个矩阵c,c(i,j)=a[i]*b[j],因此矩阵c也是由0和1构成,再给出一个整数k,求c矩阵中仅由k个1组成的子矩阵有多少个。
思路:
由c组成的性质,可以知道要么一行全为0,要么就等于b,因此可以先算出a和b中连续是1的区间长度有多少个,然后再算出长度从1到n和1到m有多少种即可。
代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
typedef long long ll;
int a[40005],b[40005],x[40005],y[40005];
int main(){
	int n,m,k,aa,bb;
	cin>>n>>m>>k;
	int p1=0,p2=0,l,r;
	l=r=-1;
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=1;i<=n;i++){
		scanf("%d",&aa);
		if(aa==1){
			if(l==-1&&r==-1) l=r=i;
			else r=i;
		}
		if(aa==0||i==n){
			if(l!=-1&&r!=-1){
				y[++p1]=r-l+1;//记录连续是1的区间长度。
				l=r=-1;
			}
		}
	}
	l=r=-1;
	for(int i=1;i<=m;i++){
		scanf("%d",&bb);
		if(bb==1){
			if(l==-1&&r==-1) l=r=i;
			else r=i;
		}
		if(bb==0||i==m){
			if(l!=-1&&r!=-1){
				x[++p2]=r-l+1;//记录连续是1的区间长度。
				l=r=-1;
			}
		}
	}
	for(int i=1;i<=p1;i++){
		for(int j=1;j<=y[i];j++){
			a[j]+=y[i]-(j-1);//计算长度为j的区间有多少个
		}
	}
	for(int i=1;i<=p2;i++){
		for(int j=1;j<=x[i];j++){
			b[j]+=x[i]-(j-1);//同上
		}
	}
	ll res=0;
	for(int i=1;i<=40000;i++){//根据k=x*y进行枚举即可。
		if(k%i==0&&k/i<=40000){//最大不可能大于40000
			res+=b[i]*a[k/i];
			//printf("%d %d\n",b[i],a[k/i]);
		}
	}
	cout<<res<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值