知识增加
依神女苑
这个作者很懒,什么都没留下…
展开
-
解决:笔记本蓝牙没了突然消失不见了
转自:https://www.zhihu.com/question/49943281转载 2020-07-27 10:31:31 · 1893 阅读 · 0 评论 -
机器视觉 LBP-TOP (local binary patterns from three orthogonal planes)
转自:https://blog.csdn.net/matrix_space/article/details/52136900之前介绍过机器视觉中常用到的一种特征:LBPhttps://blog.csdn.net/weixin_45798684/article/details/107498976LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用。但是LBP 只能处理单张的二维图像,对于视频或者图像序列,如何用LBP来提取特征,捕捉视频序列的运动信息呢。今天我们就介绍一种称为 LBP-TO转载 2020-07-21 21:29:08 · 2039 阅读 · 5 评论 -
机器视觉 Local Binary Pattern (LBP)
转自:https://blog.csdn.net/matrix_space/article/details/50481641Local binary pattern (LBP),在机器视觉领域,是非常重要的一种特征。LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用。LBP 的算法非常简单,简单来说,就是对图像中的某一像素点的灰度值与其邻域的像素点的灰度值做比较,如下图所示:如果邻域像素值比该点大,则赋为1,反之,则赋为0,这样从左上角开始,可以形成一个bit chain,然后将该 b转载 2020-07-21 21:21:30 · 1081 阅读 · 0 评论 -
什么是基线评估(Baseline Evaluation)
在CVPR2016的best paper, 也就是何凯明的Deep Residual Learning for Image Recognition一文中,对于34层残差卷积神经网络和34层普通卷积神经网络,做了对比,在对比中普通CNN被称为plain baseline(3.3开头处);ICCV2017的一篇使用GAN进行数据增强的文章Unlabeled Samples Generated by GAN Improve the Person Re-indentification Baseline in vi原创 2020-07-20 22:37:24 · 14140 阅读 · 0 评论 -
Python和Numpy构建神经网络模型预测波士顿房价
代码所需文件housing.data链接:https://pan.baidu.com/s/1oZbuUAtnEFf44w2tkUorpg提取码:ntr1构建一个基于下图13个因素进行房价预测的模型# 导入需要用到的packageimport numpy as npimport matplotlib.pyplot as pltdef load_data(): # 从文件导入数据 datafile = './housing.data' data = np.fromfi原创 2020-06-11 20:30:48 · 3712 阅读 · 6 评论 -
解决:在原有账号的基础上如何修改CSDN博客标题上的ID号
第1步第2步第3步第4步原创 2020-06-05 18:07:20 · 859 阅读 · 0 评论 -
Keras上对model进行保存和提取save&reload
本代码为Python实现Keras搭建神经网络训练回归模型# Regressor save & reload exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.models import Sequentialfrom keras.layers import Densefrom keras.models import load_model# create some dataX原创 2020-06-04 22:02:50 · 1460 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练Autoencoder自编码模型
# Autoencoder exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.models import Modelfrom keras.layers import Dense, Inputimport matplotlib.pyplot as plt# 程序中用到的数据是经典的手写体识别mnist数据集# download the mnist to the path if it is原创 2020-06-04 19:30:03 · 2279 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练RNN回归模型
# RNN LSTM Regressor exampleimport numpy as np# for reproducibilitynp.random.seed(1337)import matplotlib.pyplot as pltfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import LSTM, TimeDistributed, Densefrom kera原创 2020-06-04 16:05:59 · 2064 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练RNN分类模型
# RNN exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import SimpleRNN, Dense, Activationfrom keras.optimizers import Adam# same as the height原创 2020-06-03 23:05:02 · 1139 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练CNN模型
# CNN exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flattenfrom keras.optimizers import Adam.原创 2020-06-03 17:44:45 · 2312 阅读 · 0 评论 -
通俗理解指数加权平均
转自:https://zhuanlan.zhihu.com/p/29895933前言在深度学习优化算法中,我们会涉及到指数加权平均这个概念,下面我将通过例子来一步一步引出这个概念。平均数求法比如我们现在有100天的温度值,要求这100天的平均温度值。24,25,24,26,34,28,33,33,34,35…32。我们直接可以用公式:通过上面的公式就可以直接求出10天的平均值。而我们要介绍的指数加权平均本质上就是一种近似求平均的方法。指数加权平均我们现在直接给出公式:化简开得到如转载 2020-06-03 15:19:40 · 961 阅读 · 0 评论 -
Python中reshape函数参数-1的含义
# data pre-processing# normalize# X shape (60,000 28x28),表示输入数据 X 是个三维的数据# 可以理解为 60000行数据,每一行是一张28 x 28 的灰度图片# X_train.reshape(X_train.shape[0], -1)表示:只保留第一维,其余的纬度,不管多少纬度,重新排列为一维# 参数-1就是不知道行数或者列数多少的情况下使用的参数# 所以先确定除了参数-1之外的其他参数,然后通过(总参数的计算) / (确定除了参数-原创 2020-06-03 12:24:47 · 4754 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练分类模型
# Classifier exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Dense, Activationfrom keras.optimizers impor原创 2020-06-02 23:02:39 · 1814 阅读 · 0 评论 -
Python实现Keras搭建神经网络训练回归模型
# Regressor exampleimport numpy as np# for reproducibilitynp.random.seed(1337)from keras.models import Sequentialfrom keras.layers import Denseimport matplotlib.pyplot as plt# create some dataX = np.linspace(-1, 1, 200)# randomize the datanp.ra原创 2020-06-02 20:39:02 · 4145 阅读 · 0 评论 -
python中ctime和gmtime获取的时间不一样
time.ctime()和time.gmtime()获取的时间不一样原因是ctime()获取的时间是系统时间(北京时间)而gmtime()获取的时间是格林尼治时间(英国的标准时间)对于我们而言,两者之间有8小时时差原创 2020-05-12 16:53:16 · 2223 阅读 · 0 评论 -
c++ vector的size()返回值是unsigned int型
c++ vector的size()返回值是unsigned int型赋给int最好强制转换一下int n = (int)prices.size();原创 2020-05-12 16:47:06 · 1489 阅读 · 0 评论 -
解决:python3类定义写法,(self, nums: List[int]) -> int:
class Solution: def arrayPairSum(self, nums: List[int]) -> int: return sum(sorted(nums)[0::2])这段代码是LeetCode上的,我没有接触过这种定义写法。这是新增的语法,为了说明参数和返回值的数据类型。不过仅仅的给人看的,实际上程序并不检查是否是相符的。故意写错了,一样可以正常运行。def fun(x: int) -> str: return [x]>&原创 2020-05-10 16:18:21 · 25543 阅读 · 4 评论 -
Matlab二维正态分布可视化
高维分布一直都是一个很抽象的概念,本人在学的时候很多概念不太能理解,于是使用了Matlab进行了可视化。并对均值、方差以及相关系数进行了调整。图中x,y为两个变量的取值,z为出现的概率密度。x=-20:0.5:20;y=-20:0.5:20;u1 = 0; %均值u2 = 0; sigma1 = 2; %方差sigma2 = 2;rou =...原创 2020-04-29 16:30:33 · 1374 阅读 · 1 评论 -
似然(likelihood)和概率(probability)的区别与联系
转自:https://www.cnblogs.com/zongfa/p/9295455.html在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在...转载 2020-04-29 15:56:33 · 2626 阅读 · 0 评论 -
交叉验证法
转自:https://zhuanlan.zhihu.com/p/35394638交叉验证法的作用就是尝试利用不同的训练集/测试集划分来对模型做多组不同的训练/测试,来应对单词测试结果过于片面以及训练数据不足的问题。交叉验证的做法就是将数据集粗略地分为比较均等不相交的k份,即然后取其中的一份进行测试,另外的k-1份进行训练,然后求得error的平均值作为最终的评价,具体算法流程西瓜书中的插图...转载 2020-04-16 07:20:28 · 1300 阅读 · 0 评论 -
深度学习 | 三个概念:Epoch, Batch, Iteration
转自:https://www.jianshu.com/p/22c50ded4cf7写在前面:在训练神经网络的时候,我们难免会看到Batch、Epoch和Iteration这几个概念。曾对这几个概念感到模糊,看了网上的一些文章后,在这里做几个小小的总结。????如有错误之处,还望指出。名词解释:Epoch(时期):当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次>...转载 2020-04-16 07:15:59 · 2772 阅读 · 0 评论 -
训练集(train)、验证集(validation)和测试集(test)
转自:https://kexue.fm/archives/4638在有监督的机器学习中,经常会说到训练集(train)、验证集(validation)和测试集(test),这三个集合的区分可能会让人糊涂,特别是,有些读者搞不清楚验证集和测试集有什么区别。划分如果我们自己已经有了一个大的标注数据集,想要完成一个有监督模型的测试,那么通常使用均匀随机抽样的方式,将数据集划分为训练集、验证集、测试...转载 2020-04-14 07:31:38 · 3533 阅读 · 1 评论 -
端到端的深度学习(end-to-end deep learning)
端到端的深度学习(end-to-end deep learning)转自:https://blog.csdn.net/zhuiqiuzhuoyue583/article/details/103067657相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析...转载 2020-04-14 07:02:53 · 422 阅读 · 0 评论 -
softmax和softmax loss详细解析
softmax和softmax loss详细解析转自:https://blog.csdn.net/luoxuexiong/article/details/90062937我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得...转载 2020-04-09 10:12:51 · 284 阅读 · 0 评论