什么是基线评估(Baseline Evaluation)

本文探讨了深度学习研究中“基线”(baseline)的概念,通过CVPR2016最佳论文和ICCV2017一篇GAN应用文章的例子,解释了基线在实验对比中的作用,以及它如何作为衡量模型性能提升的参照标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在CVPR2016的best paper, 也就是何凯明的Deep Residual Learning for Image Recognition一文中,对于34层残差卷积神经网络和34层普通卷积神经网络,做了对比,在对比中普通CNN被称为plain baseline(3.3开头处);

ICCV2017的一篇使用GAN进行数据增强的文章Unlabeled Samples Generated by GAN Improve the Person Re-indentification Baseline in vitro 中在abstract中描述自己的结果比一个强大的baseline准确率提高了0.6%

由此二者结合一些网上的资料可见,baseline一词应该指的是对照组,基准线,就是你这个实验有提升,那么你的提升是对比于什么的提升,被对比的就是baseline

因此,基线评估法是一种基本的评价方法,主要用来监测目标及相关情况的进展和变化,具体反映四个方面的情况:一是反映要解决的问题;二是有限的几个指标跟踪反映目标进展情况;三是反映的变化是连续的、容易测度;四是记录的基线变化在测量期的变化比较明显,并提供比较、判断的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值