1.6.2 回文质数
题目考查
质数 回文 11的倍数的特征
首先我们考虑回文质数, 一定是个质数, 如果这个质数又是回文数字, 则为回文质数.
但是我们没法判断 [ 1 , 1 0 8 ] [1, 10^8] [1,108]内的所有质数, 欧拉筛大概也只能筛出 1 0 7 10^7 107的质数. 因此考虑优化.
我们发现, 除 11 11 11以外, 不会再有偶数长度的回文质数了.
因为11的倍数的特点是: 某个数字的奇数位置的和, 与偶数位置的和 的差值, 可以被11整除.
因此除11以外, 偶数长度的回文质数一定都是11的倍数.
我们通过这个性质, 把答案值域缩小到了 [ 1 , 1 0 7 ] [1, 10^7] [1,107], 我们可以枚举 [ l , r ] [l, r] [l,r]的所有质数, 判断其是否是回文数字即可.
题目细节
无
AC代码
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E7 + 10;
bool vis[N];
int prime[N], ind;
void init(int n = N - 5) {
vis[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!vis[i]) prime[++ind] = i;
for (int j = 1; prime[j] <= n / i; ++j) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
}
}
}
bool fact(int x) {
string a = to_string(x);
string b = a; reverse(b.begin(), b.end());
return a == b;
}
int main()
{
init();
int l, r; cin >> l >> r;
rep(i, ind) {
if (prime[i] < l) continue;
if (prime[i] > r) break;
if (fact(prime[i])) printf("%d\n", prime[i]);
}
return 0;
}