USACO 1.6.2 回文质数

1.6.2 回文质数

题目考查

质数 回文 11的倍数的特征

首先我们考虑回文质数, 一定是个质数, 如果这个质数又是回文数字, 则为回文质数.

但是我们没法判断 [ 1 , 1 0 8 ] [1, 10^8] [1,108]内的所有质数, 欧拉筛大概也只能筛出 1 0 7 10^7 107的质数. 因此考虑优化.

我们发现, 除 11 11 11以外, 不会再有偶数长度的回文质数了.

因为11的倍数的特点是: 某个数字的奇数位置的和, 与偶数位置的和 的差值, 可以被11整除.

因此除11以外, 偶数长度的回文质数一定都是11的倍数.

我们通过这个性质, 把答案值域缩小到了 [ 1 , 1 0 7 ] [1, 10^7] [1,107], 我们可以枚举 [ l , r ] [l, r] [l,r]的所有质数, 判断其是否是回文数字即可.

题目细节

AC代码

#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E7 + 10;
bool vis[N];
int prime[N], ind;
void init(int n = N - 5) {
	vis[1] = 1;
	for (int i = 2; i <= n; ++i) {
		if (!vis[i]) prime[++ind] = i;
		for (int j = 1; prime[j] <= n / i; ++j) {
			vis[i * prime[j]] = 1;
			if (i % prime[j] == 0) break;
		}
	}
}
bool fact(int x) {
	string a = to_string(x);
	string b = a; reverse(b.begin(), b.end());
	return a == b;
}
int main()
{
	init();
	int l, r; cin >> l >> r;
	rep(i, ind) {
		if (prime[i] < l) continue;
		if (prime[i] > r) break;

		if (fact(prime[i])) printf("%d\n", prime[i]);
	}

	return 0;
}

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逍遥Fau

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值