R中单因素方差分析与作图

该博客介绍了对小白菜试验数据进行统计分析的过程,包括数据的读取、正态性检验(通过QQ图和Shapiro-Wilk检验)、方差齐性检验(采用Bartlett检验)以及单因素方差分析。通过多重比较和图形化展示,揭示了不同处理条件对小白菜鲜重的影响,并以柱状图形式展示了结果,其中使用了Tukey检验进行显著性差异判断。

读取数据

library(tidyverse)
library(readxl)
data2 <- readxl::read_xlsx("C:\\Users\\zhang\\Desktop\\小白菜试验数据.xlsx",sheet="Sheet3")

str(data2)

数据结构
在这里插入图片描述

正态检验

data2_baicai <- data2%>%filter(Species=="小白菜")
##定性检验
qqPlot(lm(data2_baicai$Wet_weight~data2_baicai$Treatment))
qqPlot(lm(log(data2_baicai$Wet_weight)~data2_baicai$Treatment)) ##log转化
##定量检验
shapiro.test(residuals(lm(data2_baicai$Wet_weight~data2_baicai$Treatment)))

shapiro.test(residuals(lm(log(data2_baicai$Wet_weight)~data2_baicai$Treatment)))  ##log转化

原数据残差正态检验

定性
在这里插入图片描述
定量
在这里插入图片描述
log转化后正态检验
定性
在这里插入图片描述

定量
在这里插入图片描述

方差齐性检验

bartlett.test(log(data2_baicai$Wet_weight),data2_baicai$Treatment)

在这里插入图片描述

单因素方差分析

library(multcomp) ##方差分析包

par(mar=c(4,4,7,4))  ##调整图形大小

data2_baicai$Treatment <- as.factor(data2_baicai$Treatment) ##将数据类型的处理改为因子类型
fit <- aov(log(Wet_weight)~Treatment,data2_baicai) ##方差分析
summary(fit)  ## 方差分析结果

在这里插入图片描述

多重比较

plot(cld(glht(fit, linfct=mcp(Treatment="Tukey")),level = 0.05,col="lightgrey"))  ##多重比较图形化,这里使用Tukey检验

在这里插入图片描述

作图

library(sciplot) ##计算标准误的包
data2_baicai$Treatment <- factor(data2_baicai$Treatment,levels = c("CK","1.25","2.5","5","10"))##改变x轴坐标顺序

data2_baicai%>%group_by(Treatment)%>%
  summarise(mean=mean(Wet_weight),se=se(Wet_weight))%>%  ##分组计算平均值和标准误
  mutate(labels=c("b","b","b","b","a"))%>% ##添加显著性标记到数据中
  ggplot()+
  geom_col(aes(x=Treatment,y=mean))+ ##画柱状图
  geom_errorbar(aes(x=Treatment,ymin=mean-se,ymax=mean+se),width=0.2)+  ##添加误差线
  labs(x="处理",y="鲜重")+  ##更改xy轴的名称
  geom_text(aes(x=Treatment,y=mean+se,label=labels,vjust = -0.5, hjust = "center"))+  ## 添加显著性标记到图形中
  ylim(0,0.08)+  ## 设置y轴的范围
  theme_test()  ##  设置图形主题

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码农夫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值