列联表与独立性检验(一维列联表 二维列联表 三维列联表 ; 卡方检验 Fisher精确检验 Cochran-Mantel-Haenszel检验)

该博客介绍了如何使用R语言进行列联表分析,包括一维、二维和三维列联表的创建及比例计算,并展示了如何进行独立性检验,如卡方检验、Fisher精确检验和Cochran-Mantel-Haenszel检验,用于判断变量间是否独立。此外,提供了相关R代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

列联表

列联表可以告诉你组成表格的各种变量组合的频数或比例

一维列联表

data <- with(Arthritis,table(Improved))  ## 简单的频数统计表

data

prop.table(data)   ## 将频数转化为比例值

prop.table(data)*100   ## 转化为百分比

在这里插入图片描述

二维列联表

data <- xtabs(~Treatment+Improved, data = Arthritis) ## 生成二维列联表
data
margin.table(data,1)
prop.table(data,1)
addmargins(data)      
addmargins(prop.table(data))   ## 添加所有变量的边际和
addmargins(prop.table(data,1),2)  ## 仅添加各行的边际和
addmargins(prop.table(data,1),1)  ## 仅添加各列的边际和

library(gmodels)
CrossTable(Arthritis$Treatment,Arthritis$Improved)

在这里插入图片描述
在这里插入图片描述

三维列联表

data <- xtabs(~Treatment+Improved+Sex, data = Arthritis)

data

ftable(data)

margin.table(data,1)
margin.table(data,2)
margin.table(data,3)

margin.table(data,c(1,3))

ftable(prop.table(data,c(1,2)))

ftable(addmargins(prop.table(data,c(1,2)),3))

在这里插入图片描述
在这里插入图片描述

独立性检验

对列联表中各变量之间是否相关或独立进行检验

卡方检验


library(vcd)

data <- xtabs(~Treatment+Improved, data = Arthritis) ## 生成二维列联表

chisq.test(data)   ## 卡方检验

data <- xtabs(~Sex+Improved, data = Arthritis) ## 生成二维列联表

chisq.test(data)   ## 卡方检验

在这里插入图片描述
P值小于0.05,代表变量间不独立

Fisher精确检验

data <- xtabs(~Treatment+Improved, data = Arthritis) ## 生成二维列联表

fisher.test(data)

在这里插入图片描述

Cochran-Mantel-Haenszel检验

data <- xtabs(~Treatment+Improved+Sex, data = Arthritis) ## 生成三维列联表

mantelhaen.test(data)    ##必须是三维列联表

在这里插入图片描述

参考文献

Kabacoff, R. (2016). R 语言实战. Ren min you dian chu ban she.

在SPSS中进行列联表独立性检验有几种方法。其中之一是使用分层χ2检验。这种检验方法将研究对象分解成不同层次,然后按照各层对象来进行行变量列变量的独立性研究。SPSS的统计分析菜单中提供了Cochran’s和Mantel-Haenszel统计量来自动给出结果。 进行列联表独立性检验后,我们需要根据统计量观测值和临界值的比较结果来做出结论和决策。如果卡方统计量的观测值大于卡方临界值,则可以拒绝原假设,即认为实际分布期望分布之间的差距显著,行列变量之间存在相关关系。另外,我们还可以根据统计量观测值的概率P值和显著性水平α的比较结果来做出决策。如果P值小于等于α,则可以拒绝原假设,认为行列变量之间存在相关关系。 在SPSS中,还有其他一些功能和选项可以用于列联表独立性检验,比如卡方检验Fisher检验和McNemar检验。此外,还可以计算期望和残差,包括皮尔逊残差、标准化残差和调整的标准化残差。对于缺失值,可以将其视为一种有效值进行处理。同时,还可以对行和列标题进行标注,并生成SAS或SPSS风格的输出。 综上所述,SPSS提供了多种方法和选项来进行列联表独立性检验,可以根据具体情况选择适合的方法和进行相应的统计分析。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [SPSS——描述性统计分析——列联表](https://blog.csdn.net/liuyuan_jq/article/details/51835149)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [【SPSS】列联表分析详细操作教程(附案例实战)](https://blog.csdn.net/m0_64336780/article/details/128920454)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [R语言列联表](https://download.csdn.net/download/weixin_38686924/14885224)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码农夫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值