openpose_python如何识别关节点,提取关节点的坐标,及提取出的坐标的分析

使用OpenPose进行人体、脸部和手部关键点检测
这篇博客介绍了如何利用OpenPose库在Python中进行人体、脸部和手部关键点检测。首先,通过导入pyopenpose库并设置参数,包括指定模型路径、开启face和hand检测。接着,读取图片并进行识别,关键点信息存储在datum对象中,包括BODY25、face和handKeypoints。BODY25包含25个全身关节点,face有70个坐标点,手部有21个关节点。识别后的图片可以显示出来,关节点坐标可用于后续的分析或应用。

Step1: 识别图片中的关节点

根据examples中的例子,首先导入pyopenpose库

# Import Openpose (Windows)
dir_path =r'C:\Users\WJT\Desktop\myopenpose\build\examples\tutorial_api_python'
if platform == "win32":
    # Change these variables to point to the correct folder (Release/x64 etc.)
    sys.path.append(dir_path + '/../../python/openpose/Release');
    os.environ['PATH']  = os.environ['PATH'] + ';' + dir_path + '/../../x64/Release;' +  dir_path + '/../../bin;'
    import pyopenpose as op

之后按照实例中的写法,输入待检测的图片地址

# Flags
parser = argparse.ArgumentParser()
parser.add_argument("--image_path", default="../../../examples/media/COCO_val2014_000000000474.jpg", 
                    help="Process an image. Read all standard formats (jpg, png, bmp, etc.).")
args = parser.parse_known_args()

添加参数,由于我们在此做全身的识别,所以要将facehand设为True(具体看实例)

# Custom Params (refer to include/openpose/flags.hpp for more parameters)
params = dict()
params["model_folder"] = "../../../models/"
params["face"] = True
params["hand"] = True

之后,再照抄实例的写法,将参数进行进一步设置

# Add others in path?
for i in range(0, len(args[1])):
    curr_item = args[1][i]
    if i != len(args[1])-1: next_item = args[1][i+1]
    else: next_item = "1"
    if "--" in curr_item and "--" in next_item:
        key = curr_item.replace('-','')
        if key not in params:  params[key] = "1"
    elif "--" in curr_item and "--" not in next_item:
        key = curr_item.replace('-','')
        if key not in params: params[key] = next_item

再进行下一步,代码注释已经很详细

opw = op.WrapperPython()# 创建openpose的包装器

opw.configure(params)# 将之前的参数配置到包装器中

opw.start()# 类似于包装器建立成功

datum = op.Datum()# datum是openpose的一个管理数据的类

path = args[0].image_path

img = cv2.imread(path)# 读取待识别的图片

datum.cvInputData = img# 将图片作为输入图片导入

然后,开始识别图片中的关节点

opw.emplaceAndPop(op.VectorDatum([datum]))# 进行识别

可以通过以下两种形式打印识别好的图片
1、

cv2.imshow("datum.cvOutputData", datum.cvOutputData)

效果:
在这里插入图片描述

2、

cv2.imshow("datum.outputData", datum.outputData)

效果:
在这里插入图片描述

Step2: 提取关节点的坐标

关节点的坐标保存在datum中,主要分为三类:

  1. 全身骨关节点(pose)
    骨关节点作者了解的是两个,貌似有三个,一个是BODY25,另一个是COCO18

    BODY25:
    在这里插入图片描述

    COCO18:
    在这里插入图片描述

我用到的是BODY25,它储存在datum.poseKeypoint中,数据形式如下:

在这里插入图片描述

(4,25,3)的数据结构中:
4代表图片中有4个人,25表示BODY25中的25个关节点对应的坐标,3的前两列表示关节点在图中的坐标,第三列表示置信度(大于0小于1)
在这里插入图片描述

  1. 脸关节点(face)
    同全身骨关节,脸有70个坐标点,如图
    在这里插入图片描述

坐标点储存在datum.faceKeypoints
在这里插入图片描述
数据格式的理解同上

  1. 手关节点(hand)
    手的关节点为21个:
    在这里插入图片描述

储存在datum.handKeypoints,由于有两个手,所以该属性是一个列表,存放了两个手的坐标数组
在这里插入图片描述

数据格式的理解同上

至此,关节点的坐标解释完成

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/03_python_api.md

其代码较为简单,模型(较小:7.8M)已经训练好在graph_opt.pb文件中,其中全部实现代码在openpose.py文件中,下面是实现代码及测试效果: # To use Inference Engine backend, specify location of plugins: # export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH import cv2 as cv import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map') parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.') parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.') args = parser.parse_args() BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 } POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ] inWidth = args.width inHeight = args.height net = cv.dnn.readNetFromTensorflow("graph_opt.pb") cap = cv.VideoCapture(args.input if args.input else 0) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break frameWidth = frame.shape[1] frameHeight = frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = o
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值