加油吧,707!——立体几何篇

本文面向有一定立体几何基础的读者,重点讲解了三垂线定理,并提供了一种求解二面角的简便方法,避免判断角的性质。此外,还探讨了外接球和内切球的相关问题,并附带一道练习题以巩固学习成果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的内容是基于假定阅读方有一定的立体几何基础的前提下撰写的,故将不会出现过多的基础概念及名词解释,而仅对重要部分加以强调。

重要定理

三垂线定理:平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
图例如下(图源自百度百科)
在这里插入图片描述

二面角不用判断锐角/钝角的懒人求法

(引用自https://zhuanlan.zhihu.com/p/156881503

附:不会用LaTeX的我只好截图引用。。。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值