使用一个神经元处理mnist手写体识别

使用一个神经元处理mnist手写体识别

mnist数据集划分:训练集 55000 验证集5000 测试集 10000

mnist中每张图片为28*28=784个像素点的灰度图

涉及分类问题与逻辑回归

损失函数:

线性回归——平方损失函数

二元逻辑回归——对数损失函数(凸函数)

多元逻辑回归——交叉熵损失函数

1.卷积神经网络

卷积神经网络CNN搭建导图

img

LeNet-5卷积神经网络

在这里插入图片描述

单个神经元模型:

在这里插入图片描述

2.导入相关模块


import tensorflow as tf 
import urllib
#tensoflow提供了数据集读取方法
from  tensorflow.examples.tutorials.mnist  import  input_data 
#MNIST数据集文件在读取时如果指定目录下不存在,则会自动下载,需等待一定时间,如果已经存在了,则直接读取
mnist = input_data.read_data_sets("MNIST_data/", one_hot = True) #one_hot独热编码:一种稀疏向量,其中一个元素设为1,所有其他元素均设为0

 #用于图像可视化
import numpy as np 
import matplotlib.pyplot as plt 
输出结果:
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

3.模型的构建

num_classes = 10#数据类型0-9,10个类别
input_size = 784#28*28=784个像素点

#定义待输入数据的占位符
x = tf.placeholder (tf.float32, shape = [None, input_size],name="X")  #None指行不要设,因为是批量处理数据
y = tf.placeholder (tf.float32, shape = [None, num_classes],name="Y")

#定义模型变量,以正态分布的随机数初始化权重W,以常数0初始化偏置b
W=tf.Variable(tf.random_normal([input_size,num_classes]),name="W")  #tf.random_normal函数:正态分布随机数  784*10=7840个权重
b=tf.Variable(tf.zeros([10]),name="b") #加10,7850个参数

#用单个神经元构建神经网络
forward = tf.matmul(x,W)+b #前向计算
pred=tf.nn.softmax(forward)#Softmax分类



4.训练模型

#设置训练参数࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值