常见分布的分布列/概率密度、分布函数、期望、方差、特征函数

常见离散型和连续型分布的分布列/概率密度、分布函数、期望、方差、特征函数
0-1分布的分布列、期望、方差、特征函数
二项分布的分布列、期望、方差、特征函数
泊松分布的分布列、期望、方差、特征函数
几何分布的分布列、期望、方差、特征函数
均匀分布的概率密度、分布函数、期望、方差、特征函数
正态分布的概率密度、分布函数、期望、方差、特征函数
指数分布的概率密度、分布函数、期望、方差、特征函数
伽马分布的概率密度、期望、方差、特征函数
卡方分布的概率密度、期望、方差、特征函数
柯西分布的概率密度、期望、方差、特征函数

请添加图片描述

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、 两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、 均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2) 3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0<p<1 x=0,1,……,n X的期望 E(X)=np X的方差 D(X)=np(1-p) 3.2.3 泊松分布 泊松分布比二项分布更重要。我们从产品受冲击(指瞬时高电压、高环境应力、高负载应力等)而失效的事实引入泊松分布。假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件: (1)、两个不相重叠的时间间隔内产品所受冲击次数相互独立; (2)、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计; (3)、在单位时间内发生冲击的平均次数λ(λ>0)不随时间变化,即在时间间隔Δt 内平均发生λΔt 次冲击,它和 Δt 的起点无关。 则在[0,t]时间内发生冲击的次数X服从泊松分布,其分布概率为: X的期望 E(X)=λt X的方差 D(X)=λt 假设仪表受到n次冲击即发生故障,则仪表在[0,t]时间内的可靠度为: 其中:x =0,1,2,……,λ>0,t>0。 3.2.4 x2分布分布是可靠性工程中最常用的分布之一,虽然其概率密度形式较复杂,但可由标准正态分布推出。 设有v个相互独立的随机变量X1,X2,…… Xv,它们服从于标准正态分布N(0,1)。记x2 =X12 + X22 +…Xv2 ,x2读作“卡方”则x2服从的分布称为x2分布。它的概率密度函数为: 该式称为随机变量x2服从自由度为V的x分布。 式中:V—为自由度,是个自然数 x2分布最重要的性质是: 当m为整数时: 3.3 产品的寿命分布 3.3.1 指数分布 指数分布是电子产品在可靠性工程学中最重要的分布。通常情况下,电子产品在剔除了早期故障后,到发生元器件或材料的老化变质之前的随机失效阶段其寿命服从指数分布规律。 指数分布是唯一的失效率不随时间变化而变化的连续随机变量的概率分布。容易推出: 指数分布有如下三个特点: 1. 平均寿命和失效率互为倒数; MTBF=1/λ 2. 特征寿命就是平均寿命; 3. 指数分布具有无记忆性。(即产品以前的工作时间对以后的可能工作时间没有影响) 3.3.2 威布尔分布 从上面的描述可知,指数分布只适用于浴盆曲线的底部,但任何产品都有早期故障,也总有耗损失效期。在可靠性工程学中用威布尔分布来描述产品在整个寿命期的分布情况。 将指数分布中的(-λt)替换为(-(t/η)m),就得到威布尔分布。容易得到: 3.3.3 正态分布与对数正态分布 正态分布又称为常态分布或高斯分布。它的概率密度函数为: 式中:-∞<x<∞ 分布函数记为: 对数正态分布是指:若寿命T的对数lnT服从正态分布N(u,σ),则T服从对数正态分布。它的概率密度函数为: 式中:t,σ为正数,μ和σ分别称为对数正态分布的“对数均值”和“对数标准差”。 3.4 为进行统计推断所构造的分布 3.4.1 t分布(学生氏分布) t—分布常用于区间估计、正态总体的假设检验以及机械概率设计之中。服从t—分布的随机变量记住t。它是服从标准正态分布N(0,1)的随机变量U和服从自由度为v的x2分布的随机变量x2(v)的函数。 它的概率密度函数f(t)为: 3.4.2 F—分布 F分布主要用于两个总体的假设检验与方差分析。服从F分布的随机变量F是两个相互独立的x2分布随机变量x2(v1)和x2(v2)的函数: 式中:F只能取正值。F分布概率密度函数为: 另外还有β—分布等。 中位秩是β—分布的中位数,一般用下式求出: 中位秩值≈(i-0.3)/(n+0.4) 式中:n为样本总数。
Gumbel分布是极值分布之一,通常用于描述最大值或最小值的分布情况。假设$X$是一个连续型随机变量,其概率密度函数为: $$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$$ 其中,$\mu$为位置参数,$\beta$为尺度参数。 该分布分布函数为: $$F(x)=e^{-e^{-(x-\mu)/\beta}}$$ 期望方差分别为: $$E(X)=\mu+\gamma\beta,$$ $$Var(X)=\frac{\pi^2}{6}\beta^2,$$ 其中,$\gamma$为欧拉常数,$\gamma\approx0.5772$。 推导过程如下: 首先,我们需要求出该分布分布函数。对于任意一个实数$x$,有: $$F(x)=P(X\leq x)=\int_{-\infty}^x f(t)dt$$ 将概率密度函数代入得: $$F(x)=\int_{-\infty}^x \frac{1}{\beta}e^{-(t-\mu)/\beta}e^{-e^{-(t-\mu)/\beta}}dt$$ 令$y=e^{-(t-\mu)/\beta}$,则$t=\mu-\beta\ln y$,$dt=-\frac{\beta}{y}dy$,代入得: $$F(x)=\int_0^{e^{-(x-\mu)/\beta}}\frac{1}{\beta}e^{-\ln y}dy=\int_0^{e^{-(x-\mu)/\beta}}y^{-1}dy=\left.-\ln y\right|_0^{e^{-(x-\mu)/\beta}}=e^{-e^{-(x-\mu)/\beta}}$$ 因此,该分布分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$。 接下来,我们求期望方差。首先,计算期望: $$E(X)=\int_{-\infty}^\infty x f(x)dx=\int_{-\infty}^\infty x\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$E(X)=\int_0^\infty (\mu-\beta\ln y)\frac{1}{\beta}e^{-\ln y}dy=\mu-\int_0^\infty y^{-1}\ln y dy$$ 对于$\int_0^\infty y^{-1}\ln y dy$,我们可以采用分部积分法。设$u=\ln y$,$dv=y^{-1}dy$,则$du=y^{-1}dy$,$v=\ln y$,代入得: $$\int_0^\infty y^{-1}\ln y dy=\left.y\ln y\right|_0^\infty-\int_0^\infty 1dy=0+1=1$$ 因此,$E(X)=\mu-\gamma\beta$。 接下来,计算方差: $$Var(X)=E(X^2)-[E(X)]^2=\int_{-\infty}^\infty x^2 f(x)dx-(\mu-\gamma\beta)^2$$ 将概率密度函数代入得: $$Var(X)=\int_{-\infty}^\infty x^2\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx-(\mu-\gamma\beta)^2$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$Var(X)=\int_0^\infty (\mu-\beta\ln y)^2\frac{1}{\beta}e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 展开得: $$Var(X)=\int_0^\infty \frac{\mu^2}{\beta}y^{-1}e^{-\ln y}dy-2\mu\int_0^\infty y^{-1}\ln y e^{-\ln y}dy+\beta^2\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 对于$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy$,我们可以采用分部积分法。设$u=(\ln y)^2$,$dv=y^{-1}e^{-\ln y}dy$,则$du=2\ln y\frac{1}{y}dy$,$v=-e^{-\ln y}=-y^{-1}$,代入得: $$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy=\left.-(\ln y)^2y^{-1}e^{-\ln y}\right|_0^\infty+2\int_0^\infty y^{-2}e^{-\ln y}dy=2\int_0^\infty e^{-x}dx=2$$ 因此,$Var(X)=\frac{\pi^2}{6}\beta^2$。 综上所述,Gumbel分布的密度函数为$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$,分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$,期望为$E(X)=\mu-\gamma\beta$,方差为$Var(X)=\frac{\pi^2}{6}\beta^2$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值