证明:图G=(V,E)中块的个数等于$w + \sum_{v\in V} (b(v)-1)$,其中b(v)表示G中含有v的块的个数,w表示连通分支数。

证明:图G=(V,E)中块的个数等于 w + ∑ v ∈ V ( b ( v ) − 1 ) w + \sum_{v\in V} (b(v)-1) w+vV(b(v)1),其中b(v)表示G中含有v的块的个数,w表示连通分支数。

证明:

考虑其中一个连通分支 G i G_i Gi,求 G i G_i Gi的块点割树,其中割点集合为 X i X_i Xi,块集合为 B i B_i Bi.

块点割树,顶点为块和割点,如果块包含某个割点则和该割点连边,块和块之间不连边,割点和割点之间不连边。

块点割树有二部划分 ( X i , B i ) (X_i,B_i) (Xi,Bi): 二部图的边数,等于某一个部集的度和。
∣ B ∣ = ∑ i = 1 w ∣ B i ∣ = ∑ i = 1 w [ ∣ V ( G i ) ∣ − ∣ X i ∣ ] = ∑ i = 1 w [ m ( G i ) + 1 − ∣ X i ∣ ] = ∑ i = 1 w [ ∑ v ∈ V ( G i ) d ( v ) + 1 − ∣ X i ∣ ] = ∑ i = 1 w [ ∑ v ∈ V ( G i ) b ( v ) + 1 − ∣ X i ∣ ] = ∑ i = 1 w [ ∑ v ∈ V ( G i ) [ b ( v ) − 1 ] + 1 ] = w + ∑ v ∈ V ( b ( v ) − 1 ) \begin{aligned} |B| = \sum_{i=1}^w|B_i| &= \sum_{i=1}^w [|V(G_i)|-|X_i|] \\ &=\sum_{i=1}^w [m(G_i)+1-|X_i|] \\ &=\sum_{i=1}^w [\sum_{v\in V(G_i)}d(v) +1-|X_i|] \\ &=\sum_{i=1}^w [\sum_{v\in V(G_i)}b(v) +1-|X_i|] \\ &=\sum_{i=1}^w [\sum_{v\in V(G_i)}[b(v)-1] +1] \\ &=w + \sum_{v\in V} (b(v)-1) \end{aligned} B=i=1wBi=i=1w[V(Gi)Xi]=i=1w[m(Gi)+1Xi]=i=1w[vV(Gi)d(v)+1Xi]=i=1w[vV(Gi)b(v)+1Xi]=i=1w[vV(Gi)[b(v)1]+1]=w+vV(b(v)1)
得证。

  • 9
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值