【高等数学】从法向量到第二类曲面积分

从法向量到第二类曲面积分

一、引言

我在看到第二类曲线积分的公式时候,对于其中的正负号很困惑,教材上给出了结论:法线和相对应的坐标轴的夹角为锐角时取“+”,否则取负号。然而,不知道其正负号的根源会让心不得安,因此我稍微探究了一下。

分面投影法:

∬ S F ( x , y , z ) ⋅ d S = ∬ D y z ± P [ x ( y , z ) , y , z ] d y d z + ∬ D x z ± Q [ x , y ( x , z ) , z ] d x d z + ∬ D x y ± R [ x , y , z ( x , y ) ] d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{D_{yz}} \pm P[x(y,z),y,z]dydz + \iint_{D_{xz}} \pm Q[x,y(x,z),z]dxdz + \iint_{D_{xy}} \pm R[x,y,z(x,y)]dxdy \end{aligned} SF(x,y,z)dS=Dyz±P[x(y,z),y,z]dydz+Dxz±Q[x,y(x,z),z]dxdz+Dxy±R[x,y,z(x,y)]dxdy

合一投影法:

∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ± ∬ D x y F ( x , y , z ) ⋅ ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{S} \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \pm \iint_{D_{xy}} \mathbf F(x,y,z) \cdot (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1)dxdy \end{aligned} SF(x,y,z)dS=SF(x,y,z)n0(x,y,z)dS=±DxyF(x,y,z)(xz,yz,1)dxdy

二、法线和切平面
1. 平面的表示

首先,要知道,一个平面的显式表示和隐式表示:

  • 隐式: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

  • 显式: z = z ( x , y ) z = z(x,y) z=z(x,y)

实际上,显式表示是一种几何学上的参数化,其逆过程是隐式化,可表示为: F ( x , y , z ) = z − z ( x , y ) = z ( x , y ) − z = 0 \color{fuchsia}{F(x,y,z) = z-z(x,y) = z(x,y)-z=0} F(x,y,z)=zz(x,y)=z(x,y)z=0

2. 法向量

现在在平面上任意找一个点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)

那么,这一点的法向量可以

  • 用梯度表示为: ∇ F ( x , y , z ) \nabla \mathbf F(x,y,z) F(x,y,z)

  • 或者用偏导数的外积表示为: ∂ X ∂ x × ∂ X ∂ y \frac{\partial \mathbf X}{\partial x} \times \frac{\partial \mathbf X}{\partial y} xX×yX或者 ∂ X ∂ y × ∂ X ∂ x \frac{\partial \mathbf X}{\partial y} \times \frac{\partial \mathbf X}{\partial x} yX×xX,这里的X是曲面坐标,比如三维空间里面,使用z(x,y)进行参数化,那么得到的曲面坐标为**(x,y,z(x,y))**。

对于显示表示的平面的法向量,可表示为: n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \color{fuchsia}{\mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) } n(x,y)=(xz,yz,1) 或者 n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \color{fuchsia}{\mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) } n(x,y)=(xz,yz,1),此时法向量的值只和x、y有关

我非常刻意地将法向量写成了两种表示形式,这是因为对于一个有向曲面而言有两侧。现在最关键的两句话是:
1. 若采用z(x,y)进行参数化,其法向量 n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) n(x,y)=(xz,yz,1)一定是指向 n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) n(x,y)=(xz,yz,1)一定指向
1. 若采用z(x,y)进行参数化,一定要保证函数 z = z ( x , y ) z = z(x,y) z=z(x,y)是单值函数。

现在如果我们关注的一片曲面,是一个右半球,那么采用**y(x,z)**进行参数化,更加方便,此时曲面坐标只和x、z有关。那么其其法向量 n ( x , z ) = ( − ∂ y ∂ x , 1 , − ∂ y ∂ z ) \mathbf n(x,z) = (-\frac{\partial y}{\partial x},1,-\frac{\partial y}{\partial z}) n(x,z)=(xy,1,zy)一定是指向 n ( x , z ) = ( ∂ y ∂ x , − 1 , ∂ y ∂ z ) \mathbf n(x,z) = (\frac{\partial y}{\partial x},-1,\frac{\partial y}{\partial z}) n(x,z)=(xy,1,zy)一定指向西

现在如果我们关注的一片曲面,是一个前半球,那么采用**x(y,z)**进行参数化,更加方便,此时曲面坐标只和y、z有关。那么其其法向量 n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,yx,zx)一定是指向 n ( y , z ) = ( − 1 , ∂ x ∂ y , ∂ x ∂ z ) \mathbf n(y,z) = (-1,\frac{\partial x}{\partial y},\frac{\partial x}{\partial z}) n(y,z)=(1,yx,zx)一定指向

三、第二类曲面积分

∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ∬ S { P ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 1 , 0 , 0 ] + Q ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 1 , 0 ] + R ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 0 , 1 ] } d S = ∬ S [ P ( x , y , z ) cos ⁡ α + Q ( x , y , z ) cos ⁡ β + P ( x , y , z ) cos ⁡ γ ] d S \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_S \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \iint_S \{ P(x,y,z) \mathbf {n_0}(x,y,z) \cdot [1,0,0]+ Q(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,1,0] + R(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,0,1] \} dS\\ &= \iint_S [P(x,y,z)\cos \alpha + Q(x,y,z)\cos \beta + P(x,y,z)\cos \gamma ]dS \end{aligned} SF(x,y,z)dS=SF(x,y,z)n0(x,y,z)dS=S{P(x,y,z)n0(x,y,z)[1,0,0]+Q(x,y,z)n0(x,y,z)[0,1,0]+R(x,y,z)n0(x,y,z)[0,0,1]}dS=S[P(x,y,z)cosα+Q(x,y,z)cosβ+P(x,y,z)cosγ]dS

有向曲面的面积微元是带有方向的,其方向由你选择的曲面的侧决定,比如选择了曲面的前侧那么其法向量一定是指向,此时的法向量将会是 n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,yx,zx)

顺便说一下合一投影法分面投影法

  1. 合一投影法:就是上式的第一步等式,结果是投影向某一个平面上的,比如选择**z=z(x,y)**的参数化方式,那么结果将投影到xOy平面上。
  2. 分面投影法:就是上式的第二步等式,三个法向量可以采用不同的参数化方式,比如对于x轴方向上的P(x,y,z),就用x=x(y,z),然后投影到yOz平面;对于z轴方向的R(x,y,z),就用z=z(x,y),然后投影到xOy平面上。

这里,通过向量[1,0,0] 、[0,1,0]、 [0,0,1]其实就将法向量的偏导数部分归零了。我们发现,从这个角度去理解,合一投影法和分面投影法没有本质上的区别。

  • 8
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值