机器学习
Road_Son
博客内的代码都在我的GitHub上
https://github.com/RoadSon/MLAndOptimization
展开
-
条件随机场
前言条件随机场是《统计学习方法》的最后一章,书上只讨论了它在标注问题上的应用,因此主要讲述的是线性链条件随机场(也就是基于HMM提到的马尔可夫链的两个假设),但是即便如此,我看完之后还是觉得很吃力,比隐马尔科夫模型要难理解一些。于是我去查阅了一些资料,很多资料都提到了这篇论文An introduction to conditional random fields,我去看了一下这篇论文总共109面...原创 2019-11-04 09:37:10 · 225 阅读 · 0 评论 -
强化学习
一、初识强化学习1. 强化学习和蒙特卡洛树搜索因为这两周学习了蒙特卡洛树搜索算法,当时看了相关资料介绍,蒙特卡洛方法属于强化学习的范畴,所以我就去看了西瓜书的最后一章强化学习。我看书的时候就觉得蒙特卡洛树搜索算法和强化学习有着非常紧密的联系,书上提到的exploration和exploitation、蒙特卡洛方法、奖励函数等内容和蒙特卡洛树搜索的基本思想有很多相同的地方。2. 强化学习与机器...原创 2019-11-03 10:04:09 · 2896 阅读 · 2 评论 -
蒙特卡洛树搜索
蒙特卡洛树搜索一、基本思想要搞清楚蒙特卡洛树搜索的基本思想首先要明白什么是蒙特卡洛树?蒙特卡洛指的就是蒙特卡洛方法,又称统计模拟方法,是通过产生随机数来解决问题的方法,例如投针方法来计算Π。树就是我们数据结构中学的树结构,注意,这里不是二叉树,每个结点有多个孩子结点。搜索就是遍历树,找到最优解。蒙特卡洛树搜索算法是一种用于决策的启发式搜索算法,在上《人工智能基础》这门课时,接触过几个启发式搜...原创 2019-11-03 10:03:18 · 8118 阅读 · 1 评论 -
特征选择与稀疏学习
一、特征选择原因避免维数灾难去除不相关特征可以降低学习难度二、特征选择方法常见的特征选择方法主要有三种:过滤式(Filter)、包裹式(Wrapper)、嵌入式(Embedding)。1. 过滤式选择先对特征进行选择,然后再训练学习器,这里介绍一个著名的过滤式选择方法:Relief训练集{(x1,y1),(x2,y2),...,(xm,ym)}\{(x_1,y_1),(x_2,y...原创 2019-11-03 10:00:36 · 273 阅读 · 0 评论 -
隐马尔可夫模型
一、基本思想隐马尔可夫模型是基于时序的概率模型,由初始状态概率向量Π、状态转移概率矩阵A和观测概率矩阵B组成。隐马尔可夫做了两个基本假设:齐次马尔可夫性假设:任意时刻的状态只与上一时刻的状态有关观测独立性假设:任意时刻的观测值只与该时刻的状态有关隐马尔科夫模型主要用来解决三个问题:概率计算问题:给定模型λ=(Π,A,B)和观察序列O,求在模型λ下观测序列O出现的概率P(O|λ)...原创 2019-11-02 18:02:51 · 339 阅读 · 0 评论