Time Limit: 1000MS | Memory Limit: 10000K |
---|
Description
Inhabitants of the Wonderland have decided to hold a regional programming contest. The Judging Committee has volunteered and has promised to organize the most honest contest ever. It was decided to connect computers for the contestants using a “star” topology - i.e. connect them all to a single central hub. To organize a truly honest contest, the Head of the Judging Committee has decreed to place all contestants evenly around the hub on an equal distance from it.
To buy network cables, the Judging Committee has contacted a local network solutions provider with a request to sell for them a specified number of cables with equal lengths. The Judging Committee wants the cables to be as long as possible to sit contestants as far from each other as possible.
The Cable Master of the company was assigned to the task. He knows the length of each cable in the stock up to a centimeter,and he can cut them with a centimeter precision being told the length of the pieces he must cut. However, this time, the length is not known and the Cable Master is completely puzzled.
You are to help the Cable Master, by writing a program that will determine the maximal possible length of a cable piece that can be cut from the cables in the stock, to get the specified number of pieces.
Input
The first line of the input file contains two integer numb ers N and K, separated by a space. N (1 = N = 10000) is the number of cables in the stock, and K (1 = K = 10000) is the number of requested pieces. The first line is followed by N lines with one number per line, that specify the length of each cable in the stock in meters. All cables are at least 1 meter and at most 100 kilometers in length. All lengths in the input file are written with a centimeter precision, with exactly two digits after a decimal point.
Output
Write to the output file the maximal length (in meters) of the pieces that Cable Master may cut from the cables in the stock to get the requested number of pieces. The number must be written with a centimeter precision, with exactly two digits after a decimal point.
If it is not possible to cut the requested number of pieces each one being at least one centimeter long, then the output file must contain the single number “0.00” (without quotes).
Sample Input
4 11
8.02
7.43
4.57
5.39
Sample Output
2.00
解题思路:
①题意:有N条绳子,它们的长度分别为Li。如果从它们中切割K条长度相等的绳子的话,这K条绳子的每条最长能有多长?答案保留到小数点后两位。
②思路:我们可以令条件C(x)=可以得到K条长度为x的绳子。那么所求问题就变成了-----求满足C(x)条件的最大的x。在区间初始化时,只要使用充分大的数INF(>MAXL)做区间上界。即l=0,r=INF;由于长度为Li的绳子最多可以切成floor(Li/x)段长度为x的绳子。因此
C(x)=(floor(Li/x)的总和是否大于或等于K)。
#include<iostream>
#include<cstdio>
#include<cmath>
#define MAX 10005
const double INF=100005.0;
using namespace std;
int n,k;
double l[MAX];
bool check(double x)
{
int sum=0;
for(int i=0;i<n;i++)
sum+=(int)(l[i]/x);
return sum>=k;
}
int main()
{
while(scanf("%d %d",&n,&k)!=EOF)
{
for(int i=0;i<n;i++)
scanf("%lf",&l[i]);
double mid,l=0,r=INF;
for(int i=0;i<100;i++) //代替while(r>l) 避免了精度问题 ,1次循环可以把区间缩小一半,100次可以达到10^(-30)的精度
{
mid=(l+r)*1.0/2;
if(check(mid))
l=mid;
else
r=mid;
}
printf("%.2f\n",floor(r*100)/100); //注意向下取整
}
return 0;
}