stacking和blending的原理和各自的优劣

本文介绍了机器学习中的集成学习算法stacking和blending的原理。stacking通过k折交叉验证生成元特征,而blending则采用holdout方法,将训练集分为两部分。stacking过程复杂但更稳健,而blending虽然简单,但可能因数据量少和过拟合问题而不够稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中集成学习算法,stacking和blending

一.原理

1.stacking

stacking是k折交叉验证,元模型的训练数据等同于基于模型的训练数据,该方法为每个样本都生成了元特征,每生成元特征的模型不一样(k是多少,每个模型的数量就是多少);测试集生成元特征时,需要用到k(k fold不是模型)个加权平均;

2.blending

blending是holdout方法,直接将训练集切割成两个部分,仅10%用于元模型的训练;

二.stacking过程解读

在这里插入图片描述

三.优劣

1.stacking

在这里插入图片描述

2.blending

1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)

2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集

3.在团队建模过程中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值