某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。
输入格式:
输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。
输出格式:
输出全省畅通需要的最低成本。
输入样例:
4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0
输出样例:
3
代码
#include <bits/stdc++.h>
using namespace std;
int ans;
struct node
{
int be, en, cost, bo;
bool operator < (const node a)const
{
return cost < a.cost;
}
};
node a[10000001];
int b[1000001];
int find(int x)
{
if(b[x] != x) b[x] = find(b[x]);
return b[x];
}
int main()
{
int n;
cin>>n;
for(int i = 1; i <= n; i++)
b[i] = i;
int len = n*(n-1)/2;
for(int i = 0; i < len; i++)
{
cin>>a[i].be>>a[i].en>>a[i].cost>>a[i].bo;
if(a[i].bo == 1)
{
int ben = find(a[i].be);
int enn = find(a[i].en);
if(ben != enn)b[enn] = ben;
}
}
sort(a, a+len);
for(int i = 0; i < len; i++)
{
int bee = find(a[i].be);
int ene = find(a[i].en);
if(bee != ene)
{
b[ene] = bee;
ans += a[i].cost;
}
}
cout<<ans<<endl;
return 0;
}