畅通工程之局部最小花费问题

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。

输入格式:

输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。

输出格式:

输出全省畅通需要的最低成本。

输入样例:

4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0

输出样例:

3

代码

#include <bits/stdc++.h>
using namespace std;
int ans;
struct node
{
	int be, en, cost, bo;
	bool operator < (const node a)const
    {
		return cost < a.cost;
	}
};
node a[10000001];
int b[1000001];
int find(int x)
{
	if(b[x] != x) b[x] = find(b[x]);
	return b[x];
}
int main()
{
	int n;
	cin>>n;
	for(int i = 1; i <= n; i++)
	b[i] = i;
	int len = n*(n-1)/2;
	for(int i = 0; i < len; i++)
    {
		cin>>a[i].be>>a[i].en>>a[i].cost>>a[i].bo;
		if(a[i].bo == 1)
        {
			int ben = find(a[i].be);
			int enn = find(a[i].en);
			if(ben != enn)b[enn] = ben;
		}
	}
	sort(a, a+len);
	for(int i = 0; i < len; i++)
    { 
		int bee = find(a[i].be);
		int ene = find(a[i].en);
		if(bee != ene)
        {
			b[ene] = bee;
			ans += a[i].cost;
		}
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值