实现拉格朗日插值和牛顿插值

实验名称: 插值算法的实现
实验目的:

​ a. 实现拉格朗日插值;

​ b. 验证随着插值结点的增多插值曲线的变化情况。

​ c. 实现牛顿插值,显示插商结果;

​ d. 比较拉格朗日插值与牛顿插值的插值结果是否相同。

实验内容

一、实现拉格朗日插值

​ 为了方便起见,我选择的函数为三角函数
f ( x ) = s i n x f(x) = sinx f(x)=sinx
​ 运用基函数实现拉格朗日插值,首先要计算基函数

​ 基函数的一般形式:
在这里插入图片描述

根据基函数分子和分母的形式我们可以看出,如果想要求解基函数,可以先构造一个累乘函数,再求基函数
# 累乘函数
def T(x, i, X):
    T1 = 1
    for j in X:
        if X[i] == j:
            continue
        T1 = T1 * (x-j)
    return T1
# 插值基函数
def P(i, x, X, Y):
    P1 = T(x, i, X)/T(X[i], i, X) * Y[i]
    return P1

最后根据公式计算拉格朗日插值

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eFFt8nvb-1634994712989)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022201933938.png)]

选取八个点得到的拉格朗日插值

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GIqBLcyT-1634994712992)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022204911449.png)]

二、验证随着插值结点的增多插值曲线的变化情况

当插值节点为2个时

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4nPrtM3S-1634994712994)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022205315363.png)]

当插值节点为4个时

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FcfT3coO-1634994712995)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022205456893.png)]

当插值节点为6个时

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T8aZqS3R-1634994712997)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022205808069.png)]

当插值节点为8个时

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MnQrGixT-1634994712997)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022205026122.png)]

根据以上结果可以发现,随着插值节点的增多,曲线的拟合效果越好。为了更加精确的表示,将误差做成下列表格,可以看出随着插值节点的增多,误差减小。

插值节点误差
2个0.11861563625463706
4个0.014743131588928482
6个0.0001773516321779134
8个4.743257968842229e-06

三、实现牛顿插值,显示插商结果

根据差商的定义,容易得出高阶差商是两个低一阶差商的差商

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RhbE66fU-1634994712998)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022213207946.png)]

根据上图,容易联想到或许差商可以用二位数组来实现,具体实现代码如下:

#计算差商
def chashang(X ,Y):
    A = np.zeros([n,n])
    for i in  range(0,n):
        A[i][0] = Y[i] #每一行的第一个都是f(xi)
    for j in range(1,n):
        for i in range(j,n):
            A[i][j] = (A[i][j-1] - A[i-1][j-1])/(X[i]-X[i-j]) #根据差商公式计算
    return A

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SvS7twXq-1634994712999)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022223041586.png)]
在这里插入图片描述

根据公式实现牛顿插值:

#计算牛顿插值
def N(x, X, Y):
    sum = Y[0]
    t = np.zeros((len(X),len(X)))
    
    for i in range(0,len(X)):
        t[i,0] = Y[i]
    sumt = 1.0
    for i in range(1,len(X)):
        sumt = sumt*(x-X[i-1])
        for j in range(i,len(X)):
            sumt[j,i] = (sumt[j,i-1] - sumt[j-1,i-1])/(X[j] - X[j-i])
        sum += sumt*t[i,i]
    return sum

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gJnBF9qK-1634994712999)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022223658830.png)]

四、比较拉格朗日插值与牛顿插值的插值结果是否相同

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-haT5Hw9w-1634994713001)(C:\Users\DELL\AppData\Roaming\Typora\typora-user-images\image-20211022225848916.png)]

根据上式及以上所有结果可知,一般拉格朗日插值法和牛顿插值法的结果一致。

值得注意的是,当插值多项式从n-1次增加到n次时,拉格朗日插值必须重新计算所有的基本插值多项式;而对于牛顿插值,只需要用表格再计算一个n阶均差,然后再加上一项即可。

实验体会

1.通过用python实现拉格朗日插值方法和牛顿插值方法,加深了对插值方法的理解;

2.一般情况下在插值节点数目较多时,得到的插值公式的精度越高,插值结果误差越小,但也有特殊情况;

3.用插值方法推导已知区间之外的点得到的值往往不准确;

4.通过该实验,我学习并熟练掌握了python中的numpy和matlab库,更加熟悉了python语言的使用。

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值