拉格朗日

Lagarange乘子

  (2012-06-29 15:41:33)
   在看《计算机视觉:一种现代方法》书中“基于模型拟合的分割”一章时遇到这个概念,一下子摸不着头脑,网上查证得如下,以作笔记:
   Lagarange乘子即拉格朗日乘子,就是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法。其主要思想是引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解。
具体方法如下:
假设需要求极值的目标函数 (objective function) 为 f(x,y),限制条件为 φ(x,y)=M,
设g(x,y)=M-φ(x,y),定义一个新函数  
                              F(x,y,λ)=f(x,y)+λg(x,y)   
则用偏导数方法列出方程:   
                                               ∂F/∂x=0   
                                               ∂F/∂y=0   
                                               ∂F/∂λ=0   
求出x,y,λ的值,代入即可得到目标函数的极值   
扩展为多个变量的式子为:   
                               F(x1,x2,...λ)=f(x1,x2,...)+λg(x1,x2...)   
则求极值点的方程为:   
                                 ∂F/∂xi=0(xi即为x1、x2……等自变量)  
                                        ∂F/∂λ=g(x1,x2...)=0
书中的约束条件为   a^2+b^2=1,根据上述理论带入即得285页最顶上方程组的右边


0

阅读 (80)   评论  (0) 收藏 (0)  转载 (0)   喜欢   打印 举报
已投稿到:
  • 灌水
  • 赞
  • 美好
  • 顶
  • 顶
  • 顶
  • 开心
  • 路过

登录名: 密码: 找回密码 注册

    

验证码: 请点击后输入验证码 收听验证码

发评论

以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

新浪BLOG意见反馈留言板 不良信息反馈 电话:4006900000 提示音后按1键(按当地市话标准计费) 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 会员注册 | 产品答疑

新浪公司 版权所有


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值