Lagarange乘子
(2012-06-29 15:41:33)
在看《计算机视觉:一种现代方法》书中“基于模型拟合的分割”一章时遇到这个概念,一下子摸不着头脑,网上查证得如下,以作笔记:
Lagarange乘子即拉格朗日乘子,就是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法。其主要思想是引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解。
具体方法如下:
假设需要求极值的目标函数 (objective function) 为 f(x,y),限制条件为 φ(x,y)=M,
设g(x,y)=M-φ(x,y),定义一个新函数
F(x,y,λ)=f(x,y)+λg(x,y)
则用偏导数方法列出方程:
∂F/∂x=0
∂F/∂y=0
∂F/∂λ=0
求出x,y,λ的值,代入即可得到目标函数的极值
扩展为多个变量的式子为:
F(x1,x2,...λ)=f(x1,x2,...)+λg(x1,x2...)
则求极值点的方程为:
∂F/∂xi=0(xi即为x1、x2……等自变量)
∂F/∂λ=g(x1,x2...)=0
书中的约束条件为
a^2+b^2=1,根据上述理论带入即得285页最顶上方程组的右边
0
喜欢