【动态规划】背包问题

/*动态规划的思考方向:
1、状态表示:
2、状态计算:状态转移方程
*/

//01背包问题:给n个物品,体积为v,价值为w,每件物品只能用一次。 背包的容量为V,在容量内要求总价值最大
//思路:第i个物品有两种可能
// 前提是背包容量j> 物品i的体积
// 选:在背包容量为j的情况下,选上i物品则价值为:i-1物品的时候在重量为j-v[i]的价值+i物品的价值,
// 不选:当前背包的价值等于在i-1物品时,重量为j的价值
#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
int n,m;
int v[N],w[N];
int f[N][N];
int f1[N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    for(int i = 1; i <= n; i++){
        for(int j = 0; j <= m; j++){
            if(j >= v[i]) f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
            else f[i][j] =  f[i-1][j]; 
        }
    }
    // 01背包的一维优化
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j--)
            f1[j] = max(f1[j],f1[j-v[i]]+w[i]);
    }
     cout << f[n][m] << endl;
} 



//完全背包:每件物品有无限个
#include <iostream>
#include <algorithm>
#define N 1010
using namespace std;
int n, m;
int v[N], w[N];
int f[N][N];
int main(){
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    /*朴素算法:将每个物品的个数枚举*/
    // for(int i = 1; i <= n; i++) 
    //     for(int j = 0;j <= m; j++)
    //         for(int k = 0; k * v[i] <= j; k++)
    //             f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);

    /*优化算法:
        选:f[i,j] = max(f[i,j],f[i,j-v]+w,f[i,j-2v]+2w,……)
        不选:f[i,j-v] = max(f[i,j],f[i,j-2v]+w,f[i,j-3v]+w)
        综上可以发现:f[i,j] = max(f[i,j],f[i,j-v]+w);
    */

    for(int i = 1; i <= n; i++)
        for(int j = 0; j <= m; j++){
            f[i][j] = f[i-1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);
        }
    cout << f[n][m] << endl;
} 


// 多重背包问题;每个物品数量有限制
//思路:和完全背包一致
#include <iostream>
#include <cstring>
#include <algorithm>
#define N 1010
int n, m;
int v[N], w[N], s[N];
using namespace std;
int f[N][N];
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> v[i] >> w[i] >> s[i];

    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = 0; k <= s[i] && k * v[i] <= j; k++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);

    cout << f[n][m] << endl;
}

// 优化思路:二进制优化。将每种物品按照1,2,4,8,16,……个进行分组,成为一种新的物品,并且这种新的物品只有一个。
// 因此多重背包问题转换为一个01背包问题
#include <iostream>
#include <cstring>
#include <algorithm>
#define N  25000
#define M  2010
using namespace std;

int n, m;
int v[N], w[N], s[M];
int f[N];
int cnt = 0;

int main()
{
    cin >> n >> m;
    int a, b, s;
    for (int i = 1; i <= n; i++)
    {
        cin >> a >> b >> s;
        int k = 1;
        while (k <= s)
        {
            cnt++;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if (s > 0)
        {
            cnt++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }

    for (int i = 1; i <= cnt; i++)
    {
        for (int j = m; j >= v[i]; j--)
        {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }

    cout << f[m] << endl;
}



// 分组背包问题:物品有n组,每组物品有若干个。每组里面只能选一个

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 1010;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i++)
    {
        cin >> s[i];
        for (int j = 0; j < s[i]; j++)
            cin >> v[i][j] >> w[i][j];
    }

    for (int i = 1; i <= n; i++)
        for (int j = m; j >= 0; j--)
            for (int k = 0; k < s[i]; k++)
            {
                if (j >= v[i][k])
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
            }

    cout << f[m];
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流云枫木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值