力扣121.买股票最佳时机

文章介绍了力扣121题的解决方案,包括使用单调栈、一次遍历和动态规划的方法来找到买入和卖出股票获取最大利润的策略。三种方法分别通过维护单调栈记录价格、计算与历史最低价的差值以及状态转移矩阵来确定最佳交易时机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

力扣121.买股票最佳时机

题目描述

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

1 <= prices.length <= 105
0 <= prices[i] <= 104

方法一:单调栈

  • 自己一开始写最先想到了使用单调栈,即从左往右遍历股票价格
  • 如果栈为空或者遍历到的价格比栈顶价格更高则入栈
  • 如果遍历到的价格比栈顶价格低,则将栈顶价格和栈底价格相减作为一个结果,与最大值结果比较;然后将栈顶价格弹出,直到栈顶价格小于遍历到的价格或栈为空时,再将遍历到的新价格入栈。
  • 遍历完所有元素后,中途获得最大的结果作为最终结果。
  • 细节上:遍历完全部元素后如果栈里还有元素,则计算栈内剩余的结果,即将栈顶栈底元素相减得出,别忘了将这最后一个结果也和最大值比较。

代码实现

int maxProfit(int* prices, int pricesSize){
 int stack[pricesSize],max=0,top=0,t=0,i=0;
 while(i<pricesSize)
 {
     if(top==0||stack[top-1]<prices[i]) stack[top++]=prices[i++];
     else{
         t=stack[top-1]-stack[0];
         if(t>max) max=t;
         while(top>=1&&stack[top-1]>=prices[i]) top--;
     }
 }
 if(top!=0)  t=stack[top-1]-stack[0];
 return max>t?max:t;
}

方法二:一次遍历(力扣官解)

官方给出的算法巧妙易懂:

假设给定的数组为:[7, 1, 5, 3, 6, 4]

如果我们在图表上绘制给定数组中的数字,我们将会得到:

我们来假设自己来购买股票。随着时间的推移,每天我们都可以选择出售股票与否。那么,假设在第 i 天,如果我们要在今天卖股票,那么我们能赚多少钱呢?

显然,如果我们真的在买卖股票,我们肯定会想:如果我是在历史最低点买的股票就好了!太好了,在题目中,我们只要用一个变量记录一个历史最低价格 minprice,我们就可以假设自己的股票是在那天买的。那么我们在第 i 天卖出股票能得到的利润就是 prices[i] - minprice。

因此,我们只需要遍历价格数组一遍,记录历史最低点,然后在每一天考虑这么一个问题:如果我是在历史最低点买进的,那么我今天卖出能赚多少钱?当考虑完所有天数之时,我们就得到了最好的答案。

代码实现

int maxProfit(int* prices, int pricesSize){
 int i,max=0,MinPrice=99999,t;
 for(i=0;i<pricesSize;i++)
 {
     if(prices[i]<MinPrice) MinPrice=prices[i];
     else{
         t=prices[i]-MinPrice;
         max=max>=t?max:t;
     }
 }
 return max;
}

方法三:动态规划

这里唯一需要区别于其他力扣股票问题的细节是,由于只能买一次卖一次,所以第i天持股状态情形变化为:第i天当天买入股票时,前面并无累计金额,因为前面不会有更早的买卖交易出现了。即若当天刚刚持股,则一定是第一次持股。区别于题目买股票最佳时机Ⅱ题目中代码细节实现为: f[i][0]=fmax(f[i-1][0],f[i-1][1]-prices[i]);而本题中采用: f[i][0]=fmax(f[i-1][0],-prices[i]);

代码实现

int maxProfit(int* prices, int pricesSize){
    int f[pricesSize][2],i;
    f[0][0]=-prices[0];//持股状态
    f[0][1]=0;//未持股状态
    for(i=1;i<pricesSize;i++)
    {
        //持股
        f[i][0]=fmax(f[i-1][0],-prices[i]);
        //未持股
        f[i][1]=fmax(f[i-1][1],f[i-1][0]+prices[i]);
    }
    return f[pricesSize-1][1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值