力扣121.买股票最佳时机
题目描述
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 105
0 <= prices[i] <= 104
方法一:单调栈
- 自己一开始写最先想到了使用单调栈,即从左往右遍历股票价格
- 如果栈为空或者遍历到的价格比栈顶价格更高则入栈
- 如果遍历到的价格比栈顶价格低,则将栈顶价格和栈底价格相减作为一个结果,与最大值结果比较;然后将栈顶价格弹出,直到栈顶价格小于遍历到的价格或栈为空时,再将遍历到的新价格入栈。
- 遍历完所有元素后,中途获得最大的结果作为最终结果。
- 细节上:遍历完全部元素后如果栈里还有元素,则计算栈内剩余的结果,即将栈顶栈底元素相减得出,别忘了将这最后一个结果也和最大值比较。
代码实现
int maxProfit(int* prices, int pricesSize){
int stack[pricesSize],max=0,top=0,t=0,i=0;
while(i<pricesSize)
{
if(top==0||stack[top-1]<prices[i]) stack[top++]=prices[i++];
else{
t=stack[top-1]-stack[0];
if(t>max) max=t;
while(top>=1&&stack[top-1]>=prices[i]) top--;
}
}
if(top!=0) t=stack[top-1]-stack[0];
return max>t?max:t;
}
方法二:一次遍历(力扣官解)
官方给出的算法巧妙易懂:
假设给定的数组为:[7, 1, 5, 3, 6, 4]
如果我们在图表上绘制给定数组中的数字,我们将会得到:
我们来假设自己来购买股票。随着时间的推移,每天我们都可以选择出售股票与否。那么,假设在第 i 天,如果我们要在今天卖股票,那么我们能赚多少钱呢?
显然,如果我们真的在买卖股票,我们肯定会想:如果我是在历史最低点买的股票就好了!太好了,在题目中,我们只要用一个变量记录一个历史最低价格 minprice,我们就可以假设自己的股票是在那天买的。那么我们在第 i 天卖出股票能得到的利润就是 prices[i] - minprice。
因此,我们只需要遍历价格数组一遍,记录历史最低点,然后在每一天考虑这么一个问题:如果我是在历史最低点买进的,那么我今天卖出能赚多少钱?当考虑完所有天数之时,我们就得到了最好的答案。
代码实现
int maxProfit(int* prices, int pricesSize){
int i,max=0,MinPrice=99999,t;
for(i=0;i<pricesSize;i++)
{
if(prices[i]<MinPrice) MinPrice=prices[i];
else{
t=prices[i]-MinPrice;
max=max>=t?max:t;
}
}
return max;
}
方法三:动态规划
这里唯一需要区别于其他力扣股票问题的细节是,由于只能买一次卖一次,所以第i天持股状态情形变化为:第i天当天买入股票时,前面并无累计金额,因为前面不会有更早的买卖交易出现了。即若当天刚刚持股,则一定是第一次持股。区别于题目买股票最佳时机Ⅱ题目中代码细节实现为: f[i][0]=fmax(f[i-1][0],f[i-1][1]-prices[i]);而本题中采用: f[i][0]=fmax(f[i-1][0],-prices[i]);
代码实现
int maxProfit(int* prices, int pricesSize){
int f[pricesSize][2],i;
f[0][0]=-prices[0];//持股状态
f[0][1]=0;//未持股状态
for(i=1;i<pricesSize;i++)
{
//持股
f[i][0]=fmax(f[i-1][0],-prices[i]);
//未持股
f[i][1]=fmax(f[i-1][1],f[i-1][0]+prices[i]);
}
return f[pricesSize-1][1];
}