一道很经典的链表题,要解决两个问题:
- 判断是否存在环:快慢双指针,若两个指针相遇则说明有环;
- 找到环的入口:通过数学推导,可以发现:两个节点,分别从头结点和快慢指针相遇点开始移动,再次相遇的点就是环的入口;
数学推导:
(盗图from代码随想录)
- 相遇时:
- slow指针路程:S(slow) = x + y + n1 (y + z)
- fast指针路程:S(fast) = x + n2 (y + z) + y
- 又因为:S(slow) * 2 = S(fast) ; 所以:x = (n - 1)( y + z) + z
- 所以,从头结点到入环口恰好等于从相遇点到入环扣的距离加上(n-1)倍环长;
- So两个节点,分别从头结点和快慢指针相遇点开始移动,再次相遇的点就是环的入口;
Java:
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
// 双指针
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
// 发现环
if (slow == fast) {
//两个节点,分别从头结点和相遇点开始移动,再次相遇的点就是环的入口
ListNode index1 = head;
ListNode index2 = fast;
while (index1 != index2) {
index1 = index1.next;
index2 = index2.next;
}
return index1;
}
}
return null;
}
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1)