图片下载地址:
链接: https://pan.baidu.com/s/1peIDDBffc84XYsYkrdfuwg 提取码: ibgk
import cv2
import numpy as np
def get_contour(img):
"""获取连通域
:param img: 输入图片
:return: 最大连通域
"""
ret, img_bin = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
areas = []
for i in range(len(contours)):
area = cv2.contourArea(contours[i])
print("轮廓 %d 的面积是:%d" % (i, area))
areas.append(area)
index = np.argmax(areas)
return img_bin, contours[index]
def resize_show_image(img_name, image):
"""
缩放显示图片
:param img_name: 显示名称
:param image: 图片名称
"""
cv2.namedWindow(img_name, 0)
cv2.resizeWindow(img_name, 1075, 900)
cv2.imshow(img_name, image)
def get_cornerHarris(img_src):
"""
获取图像角点
:param img_src: 处理图像
:return: 角点图像
"""
img_corner = np.zeros(img_src.shape, np.uint8)
img_gray = img_src.copy()
img_gray = np.float32(img_gray)
img_dist = cv2.cornerHarris(img_gray, 5, 5, 0.04)
img_dist = cv2.dilate(img_dist, None)
img_corner[img_dist > 0.01 * img_dist.max()] = [255]
return img_corner
def get_warpPerspective(points, image_src):
"""
执行透视变换
:param points: 输入的四个角点
:param image_src: 输入的图片
:return: 变换后的图片
"""
src_point = np.float32([
[points[2][0], points[2][1]],
[points[3][0], points[3][1]],
[points[1][0], points[1][1]],
[points[0][0], points[0][1]]])
width = 1920
height = 1080
dst_point = np.float32([[0, 0], [width - 1, 0],
[0, height - 1], [width - 1, height - 1]])
perspective_matrix = cv2.getPerspectiveTransform(src_point, dst_point)
img_dst = cv2.warpPerspective(image_src, perspective_matrix, (width, height))
return img_dst
def main():
# 读取图片
img_white = cv2.imread("./image/image_white.jpg", cv2.IMREAD_GRAYSCALE)
img_book = cv2.imread("./image/sin0.bmp", cv2.IMREAD_GRAYSCALE)
resize_show_image("img_book", img_book)
# 最大的轮廓
img_bin, contour = get_contour(img_white)
# 处理区域mask
mask = np.zeros(img_white.shape, np.uint8)
mask = cv2.drawContours(mask, [contour], 0, (255, 255, 255), -1)
# resize_show_image("img_mask", mask)
# 获取区域角点图片
img_corner = get_cornerHarris(img_white)
# 膨胀和 mask与角点操作
kernel = np.ones((5, 5), np.uint8)
img_mask = cv2.dilate(mask, kernel)
img_corner = cv2.bitwise_and(img_mask, img_corner)
resize_show_image("image_corner", img_corner)
# 获取四个角点的中心坐标
contours, hierarchy = cv2.findContours(img_corner, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
points = []
for i in range(len(contours)):
center, radius = cv2.minEnclosingCircle(contours[i])
points.append(center)
print(points)
# 透视变换
img_dst = get_warpPerspective(points, img_book)
resize_show_image("image_dst", img_dst)
cv2.waitKey()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
角点检测
import cv2 as cv
# 1.加载图片
original = cv.imread('./box.png')
cv.imshow('Original', original)
# 2.灰度化
gray = cv.cvtColor(original, cv.COLOR_BGR2GRAY)
cv.imshow('Gray', gray)
# 3.角点检测
corners = cv.cornerHarris(gray, 7, 5, 0.04)
print(corners[corners > corners.max() * 0.01])
# 4.绘制角点图片
mixture = original.copy()
mixture[corners > corners.max() * 0.01] = [0, 0, 255]
cv.imshow('Corner', mixture)
cv.waitKey()
Corner