python pandas 合并与透视

python pandas 合并与透视

"""
    表的合并 与 透视表
    透视表 以某列分组  其它列作为数据统计结果
"""
import pandas as pd

# 准备数据
left = pd.DataFrame({
    'student_id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'student_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung', 'Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
    'class_id': [1, 1, 1, 2, 2, 2, 3, 3, 3, 4],
    'gender': ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'F'],
    'score': [46, 93, 21, 98, 79, 31, 26, 45, 99, 66],
    'age': [23, 23, 24, 23, 24, 23, 24, 24, 25, 25]})
right = pd.DataFrame(
    {'class_id': [1, 2, 3, 5],
     'class_name': ['ClassA', 'ClassB', 'ClassC', 'ClassE']})

# 链接 合并两个DataFrame 链接方式可选
data = pd.merge(left, right)
print(data)

# 透视表 行以 class_id 和 gender分组
result = data.pivot_table(index=["class_id", "gender"])
print("--------------透视 分类[class_id] 次类[gender]\n", result)

# 透视表 行以 class_id 和 gender分组
result = data.pivot_table(index=["class_id", "gender"],
                          values=["score"])
print("--------------透视 分类[class_id] 次类[gender]  只显示分数\n", result)

# 透视表 行以 class_id、gender、age 三层分类
result = data.pivot_table(index=["class_id", "gender", "age"],
                          values=["score"])
print("--------------透视 [class_id][gender][age]\n", result)

# 透视表 行以[class_id][gender]分组  纵向以[age]分组
result = data.pivot_table(index=["class_id", "gender"],
                          columns=["age"],
                          values=["score"])
print("--------------透视 横向[class_id][gender] 纵向[age]\n", result)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廷益--飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值