目录
1.0 引言
1.1 连续时间与离散时间信号
1.1.1 举例与数学表示
信号的定义(非严肃性说法):在数学上,可表示为一个或多个变量的函数。
本书的讨论范围仅限于单一变量的函数,一般总是用时间来表示自变量。
信号的分类:
1.连续时间信号:自变量连续可变,在自变量的连续值上都有定义。
举例:语音信号、大气压
2.离散时间信号: 仅仅定义在离散时刻点上,自变量仅取在一组离散值上。
举例:每周的道琼斯指数
信号的数学表示:
连续时间信号 x(t)
t:连续时间变量 () 圆括号
离散时间信号 x[n],也叫离散时间序列
n总为整数值 [] 方括号
离散信号是由连续信号经过采样获得的 。
多维信号:
x(horizon,vertical)……
x[n,m]……
系统:
线性 | 时不变 |
非线性 | 时变 |
主要研究对象:线性时不变系统
1.1.2 信号能量与功率
由平均功率推广到信号能量:
电阻上的瞬时功率为:
(1.1) |
在某时段内消耗的总能量为
(1.2) |
其平均功率(average power)为:
(1.3) |
将类似的定义推广到信号中:
由于信号常常被看为是复数值,因此
1.信号的总能量(或)
连续时间信号x(t):
(1.4) |
离散时间信号x[n]:
(1.5) |
2.信号的平均功率(或)
连续时间信号x(t):
(1.6) |
离散时间信号x[n]:
(1.7) |
此处信号的“能量”、“功率”与公式中的量是否真正关联了物理量无关,即式(1.4)-(1.7)代表的关系确实存在,可能具有错误的量纲或大小。
3.信号的总能量(或)
连续时间信号x(t):
(1.8) |
离散时间信号x[n]:
(1.9) |
4.信号的平均功率(或)
连续时间信号x(t):
(1.10) |
离散时间信号x[n]:
(1.11) |
利用关于信号能量与功率的定义,可以区分三种重要的信号:
1.信号具有有限的总能量:。这种信号的平均功率必为0,即
2.信号具有有限的平均功率。若,则。
3.和都不是有限的信号。
1.2 自变量的变换
最基本的信号变换,只涉及自变量的简单变换,即时间轴的变换。
1.2.1 自变量变换举例
时移(time shift):
原信号 | 变换后 | 含义 |
---|---|---|
x[n] | x[n-n0] | 若n0>0,右移n0。位置上的移位。 |
x(t) | x(t-t0) | 若t0>0,代表一个延时; 若t0<0,代表一个超前。 |
时间反转(time reversal):
时间尺度变换(time scaling) :
先根据的值将延时或超前,
再根据的值进行时间尺度变换和/或时间反转。
若,对延时或超前后的信号进行线性扩展;若,就进行线性压缩;若,再进行时间反转。
1.2.2 周期(periodic)信号
连续时间信号:
T:使得等式成立的最小正整数,称为基波周期(fundamental period)。
离散时间信号:
N:最小正整数值为基波周期(fundamental period)。
非周期信号(aperiodic)信号
1.2.3 偶(even)信号与奇(odd)信号
偶(even)信号:
奇(odd)信号:
重要事实: 任何信号都能分解为两个信号之和,其中一个是奇信号,一个是偶信号。
和分别称为的偶部(even part)和奇部(odd part)。