【祖师爷的信号与系统学习记录】第一章 信号与系统(1)

目录

1.0 引言

1.1 连续时间与离散时间信号 

1.1.1 举例与数学表示

1.1.2 信号能量与功率

1.2  自变量的变换

1.2.1  自变量变换举例

1.2.2  周期(periodic)信号

1.2.3  偶(even)信号与奇(odd)信号


1.0 引言



1.1 连续时间与离散时间信号 


1.1.1 举例与数学表示

信号的定义(非严肃性说法):在数学上,可表示为一个或多个变量的函数。

                  本书的讨论范围仅限于单一变量的函数,一般总是用时间来表示自变量。 

信号的分类: 

1.连续时间信号:自变量连续可变,在自变量的连续值上都有定义。

        举例:语音信号、大气压

2.离散时间信号:    仅仅定义在离散时刻点上,自变量仅取在一组离散值上。 

        举例:每周的道琼斯指数

信号的数学表示:

        连续时间信号   x(t)

        t:连续时间变量  ()  圆括号

        离散时间信号   x[n],也叫离散时间序列

        n总为整数值   []  方括号

        离散信号是由连续信号经过采样获得的 。

 多维信号:

        x(horizon,vertical)……

        x[n,m]……

系统:

线性时不变
非线性时变

主要研究对象:线性时不变系统


1.1.2 信号能量与功率

        由平均功率推广到信号能量:

        电阻上的瞬时功率为:

p(t)=v(t)i(t)=\frac{1}{R}v^2(t)(1.1)

        在某时段内消耗的总能量为

\int_{t_1}^{t_2} p(t) dt=\int_{t_1}^{t_2}\frac{1}{R}v^2(t) dt(1.2)

        其平均功率(average power)为:

\frac{1}{t_2 - t_1}\int_{t_1}^{t_2} p(t) dt=\frac{1}{t_2 - t_1}\int_{t_1}^{t_2}\frac{1}{R}v^2(t) dt(1.3)

        将类似的定义推广到信号中:

        由于信号常常被看为是复数值,因此

        1.信号的总能量(t_1\leqslant t\leqslant t_2n_1\leqslant t\leqslant n_2

        连续时间信号x(t):

\int_{t_1}^{t_2}|x(t)|^{2}dt(1.4)

        离散时间信号x[n]:

\sum_{n=n_1}^{n=n_2}|x[n]|^2(1.5)

        2.信号的平均功率(t_1\leqslant t\leqslant t_2n_1\leqslant t\leqslant n_2

        连续时间信号x(t):

\frac{1}{t_2-t_1}\int_{t_1}^{t_2}|x(t)|^{2}dt(1.6)

        离散时间信号x[n]:

\frac{1}{n_2-n_1+1}\sum_{n=n_1}^{n=n_2}|x[n]|^2(1.7)

        此处信号的“能量”、“功率”与公式中的量是否真正关联了物理量无关,即式(1.4)-(1.7)代表的关系确实存在,可能具有错误的量纲或大小。

         3.信号的总能量(-\infty \leqslant t\leqslant \infty-\infty \leqslant n\leqslant \infty

          连续时间信号x(t):

E_{\infty }:= \lim_{T\rightarrow \infty}\int_{-T}^{T}|x(t)|^{2}dt=\int_{-\infty}^{\infty}|x(t)|^{2}dt(1.8)

        离散时间信号x[n]:

E_{\infty }:= \lim_{N\rightarrow \infty}\sum_{n=-N}^{+N}|x[n]|^{2}=\sum_{n=-\infty}^{+\infty}|x[n]|^{2}(1.9)

      4.信号的平均功率(-\infty \leqslant t\leqslant \infty-\infty \leqslant n\leqslant \infty

        连续时间信号x(t):

P_{\infty }:= \lim_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}|x(t)|^{2}dt(1.10)

        离散时间信号x[n]:

E_{\infty }:= \lim_{N\rightarrow \infty}\frac{1}{2N+1}\sum_{n=-N}^{+N}|x[n]|^{2}(1.11)

        利用关于信号能量与功率的定义,可以区分三种重要的信号:

        1.信号具有有限的总能量:E_{\infty }<\infty。这种信号的平均功率必为0,即

P_{\infty }= \lim_{T\rightarrow \infty}\frac{E_\infty }{2T}=0

        2.信号具有有限的平均功率P_{\infty }。若P_{\infty }>0,则E_{\infty }=\infty

        3.P_{\infty }E_{\infty }都不是有限的信号。


1.2  自变量的变换


        最基本的信号变换,只涉及自变量的简单变换,即时间轴的变换。


1.2.1  自变量变换举例

        时移(time shift)

原信号变换后含义
x[n]x[n-n0]若n0>0,右移n0。位置上的移位。
x(t)x(t-t0)

若t0>0,代表一个延时;

若t0<0,代表一个超前。

         时间反转(time reversal):

        时间尺度变换(time scaling) :

x(\alpha t+\beta)

先根据\beta的值将x(t)延时或超前,

再根据\alpha的值进行时间尺度变换和/或时间反转。

|\alpha|<1,对延时或超前后的信号进行线性扩展;若|\alpha|>1,就进行线性压缩;若\alpha<0,再进行时间反转。


1.2.2  周期(periodic)信号

        连续时间信号:

x(t)=x(t+T)=x(t+mT),m\in Z 

        T:使得等式成立的最小正整数,称为基波周期(fundamental period)T_0

        离散时间信号:

        x[n]=x[n+N],N\in Z

        N:最小正整数值为基波周期(fundamental period)N_0

        非周期信号(aperiodic)信号


1.2.3  偶(even)信号与奇(odd)信号

        偶(even)信号:

x(-t)=x(t) \\\\x[-n]=x[n]

        奇(odd)信号:

x(-t)=-x(t) \\\\x[-n]=-x[n]

   

        重要事实: 任何信号都能分解为两个信号之和,其中一个是奇信号,一个是偶信号。

\mathit{Ev}\{x(t)\}=\frac{1}{2}[x(t)+x(-t)]

\mathit{Od}\{x(t)\}=\frac{1}{2}[x(t)-x(-t)]

        \mathit{Ev}\{x(t)\}\mathit{Od}\{x(t)\}分别称为x(t)偶部(even part)奇部(odd part)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值