最多能完成排序的块 II
这个问题和“最多能完成排序的块”相似,但给定数组中的元素可以重复,输入数组最大长度为2000,其中的元素最大为10**8。
arr是一个可能包含重复元素的整数数组,我们将这个数组分割成几个“块”,并将这些块分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。
我们最多能将数组分成多少块?
示例 1:
输入: arr = [5,4,3,2,1]
输出: 1
解释:
将数组分成2块或者更多块,都无法得到所需的结果。
例如,分成 [5, 4], [3, 2, 1] 的结果是 [4, 5, 1, 2, 3],这不是有序的数组。
示例 2:
输入: arr = [2,1,3,4,4]
输出: 4
解释:
我们可以把它分成两块,例如 [2, 1], [3, 4, 4]。
然而,分成 [2, 1], [3], [4], [4] 可以得到最多的块数。
注意:
arr的长度在[1, 2000]之间。
arr[i]的大小在[0, 10**8]之间。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/max-chunks-to-make-sorted-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
主要是依据是看到分出来的两个块中,前一个块的最大值要小于等于后一个块的最小值,因此,也可以认为如果在整个块中,索引i及之前的元素的最大值小于等于索引i之后的元素的最小值,那么就可以分块,类似于B+树中的叶子节点分裂,因此,依据这个思路设计出递归写法,然后进一步设计出递推写法。
# 递归写法
class Solution:
def maxChunksToSorted(self, arr: List[int]) -> int:
for i in range(1,len(arr)):
if max(arr[:i]) <= min(arr[i:]):
return self.maxChunksToSorted(arr[:i]) + self.maxChunksToSorted(arr[i:])
return 1
# 递推写法1
class Solution:
arr = None
def maxChunksToSorted(self, arr: List[int]) -> int:
Solution.arr = arr
return self.solve()
@lru_cache(None)
def solve(self):
arrlen = len(Solution.arr)
f = [0 for _ in range(arrlen)]
f[0] = 1
for i in range(1,arrlen):
if max(Solution.arr[:i]) <= min(Solution.arr[i:]):
f[i] = f[i-1] + 1
else:
f[i] = f[i-1]
return f[-1]
# 递推写法2
class Solution:
arr = None
def maxChunksToSorted(self, arr: List[int]) -> int:
Solution.arr = arr
return self.res()
@lru_cache(None)
def res(self):
arrlen = len(Solution.arr)
a, b = 1, 0
for i in range(1,arrlen):
if max(Solution.arr[:i]) <= min(Solution.arr[i:]):
b = a + 1
a = b
else:
b = a
return a