多元函数微分学

相关概念

  • 点列极限:设 x k {x_k} xk R n R^n Rn中一个点列,其中 x k = ( x k , 1 , x k , 2 , . . . x k , n ) x_k=(x_{k,1},x_{k,2},...x_{k,n}) xk=(xk,1,xk,2,...xk,n),又设 a n a_n an R n R^n Rn中的一个固定点,若当 k → ∞ k\to \infty k时, ρ ( x k , a ) → 0 \rho(x_k,a)\to 0 ρ(xk,a)0,即 ∀ ε > 0 , ∃ M ∈ , 使 得 ∀ k > M , 恒 有 ∣ ∣ a − x k ∣ ∣ < ε , \forall \varepsilon>0,\exists M\in ,使得\forall k>M,恒有||a-x_k||<\varepsilon, ε>0,M,使k>M,axk<ε,
    则称点列 x k {x_k} xk极限存在, a {a} a为它的极限,记作 lim ⁡ k → ∞ x k = a 或 x k → a ( k → ∞ ) . \lim_{k\to \infty}{x_k}=a 或x_k\to a(k\to \infty). klimxk=axka(k).
  • 基本点列(Cauchy点列): ∀ ε > 0 , ∃ M ∈ N , 使 得 ∀ k > M 及 p ∈ N + , 恒 有 ∣ ∣ x k + p − x k ∣ ∣ < ε \forall \varepsilon >0,\exists M\in N,使得\forall k>M 及p\in N_+,恒有||x_{k+p}-x_k||<\varepsilon ε>0,MN,使k>MpN+,xk+pxk<ε
  • 聚点:设A是 R n R^n Rn中的一个点集, a ∈ R n a\in R^n aRn,若存在A中点列 x k , x k ! = a , ( k = 1 , 2 , . . . , n ) x_k,x^k!=a,(k=1,2,...,n) xk,xk!=a,(k=1,2,...,n)使得 x k → a , ( k → ∞ ) x_k\to a,(k\to \infty) xka,(k),则称a是A的一个聚点,A的所有聚点构成的集合称为A的导集,记作A’,集合 A ‾ = A ⋃ A ′ \overline{A}=A\bigcup A' A=AA称为A的闭包.若 a ∈ A 但 a ∉ A ′ a\in A 但a\notin A' aAa/A,则称a为A的孤立点,若 A ′ ⊆ A A'\subseteq A AA,则称A为闭集.
  • A ⊆ R n A\subseteq R^n ARn,若 A ⊆ A o A\subseteq A^o AAo,即A中的点全是A的内点,则称A为开集.
  • 若存在 δ > 0 \delta >0 δ>0,使 U ( a , δ ) ⊆ A U(a,\delta) \subseteq A U(a,δ)A,则称a是A的内点,由A的所有内点构成的集称为A的内部,记作 A o A^o Ao或int A.
  • 同理,若存在 δ > 0 \delta >0 δ>0,使 U ( a , δ ) ⋂ A = ϕ U(a,\delta) \bigcap A=\phi U(a,δ)A=ϕ,则称a是A的外点,A的所有外点构成的集合称为A的外部.
  • 若对任意 δ > 0 , U ( a , δ ) \delta>0,U(a,\delta) δ>0,U(a,δ)中既含有A中的点,也含有A的余集 A c A^c Ac的点,则称a为A的边界点,A的所有边界点构成A的边界,记作
  • 设A是 R n R^n Rn中的一个点集,如果存在一个常数M>0,使得 ∀ x ∈ A , 都 有 ∣ ∣ A ∣ ∣ < = M , \forall x\in A,都有 ||A||<=M, xA,A<=M,则称A是有界集,否则称为无界集.
  • 有界集的几何含义是他能包含在一 R n R^n Rn的一个以原点为中心,M为半径的闭球 U ‾ ( 0 , M ) \overline{U}(0,M) U(0,M)中.
  • 有界闭集是紧集.
  • 若A中任意两点x与y都能用完全属于A的有限个线段联结起来,则称A是连通集,连通的开集称为区域,区域与它的边界之并称为闭区域
  • 若联结A中任意两点的线段都属于A,即若 x 1 , x 2 ∈ A , 则 ∀ t ∈ [ 0 , 1 ] , t x 1 + ( 1 − t ) x 2 ∈ A x_1,x_2\in A,则 \forall t\in [0,1],tx_1+(1-t)x_2\in A x1,x2A,t[0,1],tx1+(1t)x2A,则称A是 R n R^n Rn中的凸集.
  • A ⊆ R n A\subseteq R^n ARn是一个点集, 称映射 f : A → R f:A\to R f:AR是定义在A上的一个n元数量值函数, 简称为n元函数,也可记作 w = f ( x ) = f ( x 1 , x 2 , . . . x n ) \it{w}=f(x)=f(x_1,x_2,...x_n) w=f(x)=f(x1,x2,...xn)
    ,其中 x = ( x 1 , x 2 , . . . x n ) ∈ A x=(x_1,x_2,...x_n)\in A x=(x1,x2,...xn)A称为自变量, D ( f ) = A D(f)=A D(f)=A称为 f f f的定义域, w w w称为因变量.
  • 一元函数微分: 对于一元函数 f : U ( x 0 ) ⊆ R → R f: U(x_0)\subseteq R\to R f:U(x0)RR, 若存在一个线性函数 l ( Δ x ) = α Δ x l(\Delta x)=\alpha\Delta x l(Δx)=αΔx, 是函数的改变量可以表示为 f ( x 0 + Δ x ) − f ( x 0 ) = α Δ x + o ( Δ x ) f(x_0+\Delta x)-f(x_0)=\alpha \Delta x+o(\Delta x) f(x0+Δx)f(x0)=αΔx+o(Δx),其中 α \alpha α Δ x \Delta x Δx无关, o ( Δ x ) o(\Delta x) o(Δx)是当 Δ x → 0 \Delta x\to 0 Δx0时关于 Δ x \Delta x Δx的高阶无穷小, 则称 f f f在点 x 0 x_0 x0处可微.
  • 全微分: 类似于一元函数微分定义, 可以给出二元函数全微分定义:
    设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域 U ( x 0 , y 0 ) U(x_0,y_0) U(x0,y0)内有定义. 如果对于 ( x 0 + Δ x , y 0 + Δ y ) ∈ U ( x 0 , y 0 ) (x_0+\Delta x, y_0+\Delta y)\in U(x_0,y_0) (x0+Δx,y0+Δy)U(x0,y0)函数 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的改变量
    Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)可以表示为
    Δ z = a 1 Δ x + a 2 Δ y + o ( ρ ) \Delta z=a_1\Delta x+a_2\Delta y+o(\rho) Δz=a1Δx+a2Δy+o(ρ) f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微.即
    d z ∣ ( x 0 , y 0 ) = a 1 Δ x + a 2 Δ y dz|_{(x_0,y_0)}=a_1\Delta x+a_2\Delta y dz(x0,y0)=a1Δx+a2Δy
  • 全微分的几何意义: 切平面的增量.
  • 方向导数: 设 x 0 ∈ R 2 , l \pmb{x}_0\in\pmb{R}^2, \pmb{l} xxx0RRR2,lll是平面上一向量, 与 l \pmb{l} lll同向的单位向量为 e l \pmb e_l eeel,二元函数f定义在 x 0 \pmb x_0 xxx0的邻域内, 在 U ( x 0 ) U(\pmb x_0) U(xxx0)内让自变量 x \pmb x xxx x 0 \pmb x_0 xxx0沿与 e l \pmb e_l eeel平行的直线变到 x 0 + t e l \pmb x_0+t\pmb e_l xxx0+teeel, 从而让函数值有对应的改变量 f ( x 0 + t e l ) − f ( x 0 ) f(\pmb x_0+t\pmb e_l)-f(\pmb x_0) f(xxx0+teeel)f(xxx0).若 lim ⁡ t → 0 f ( x 0 + t e l ) − f ( x 0 ) t \lim_{t\to 0}\frac{f(\pmb x_0+t\pmb e_l)-f(\pmb x_0)}{t} t0limtf(xxx0+teeel)f(xxx0)存在,则称此极限值为 f f f在点 x 0 \pmb x_0 xxx0处沿 l \pmb l lll方向的方向导数,记作 δ f δ l ∣ x 0 , 或 δ f ( x 0 ) δ l \frac{\delta f}{\delta \pmb l}|_{\pmb x_0},或\frac{\delta f(\pmb x_0)}{\delta \pmb l} δlllδfxxx0,δlllδf(xxx0)
  • 梯度: 设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)定义在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的邻域中, 如果存在一个向量, 其方向为该函数在此点取得方向导数最大值的方向, 其模等于该函数在此点的方向导数的最大值, 则称该向量为函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的梯度, 记作 g r a d f ( x 0 , y 0 ) \pmb{grad}f(x_0,y_0) gradgradgradf(x0,y0).
  • 多元复合函数全微分: 若 u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x , y ) v=v(x,y) v=v(x,y)均在点 ( x , y ) (x,y) (x,y)处可微,且函数 z = f ( u , v ) z=f(u,v) z=f(u,v)再对应的点 ( u , v ) (u,v) (u,v)处可微, 则复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]在点 ( x , y ) (x,y) (x,y)处也必可微, 且其全微分为 d z = ( δ z δ u δ u δ x + δ z δ v δ v δ x ) d x + ( δ z δ u δ u δ y + δ z δ v δ v δ y ) d y ∂ dz=(\frac{\delta z}{\delta u}\frac{\delta u}{\delta x}+\frac{\delta z}{\delta v}\frac{\delta v}{\delta x})dx+(\frac{\delta z}{\delta u}\frac{\delta u}{\delta y}+\frac{\delta z}{\delta v}\frac{\delta v}{\delta y})dy \partial dz=(δuδzδxδu+δvδzδxδv)dx+(δuδzδyδu+δvδzδyδv)dy
  • 全导数: d z d x = ∂ z ∂ u d u d x + ∂ z ∂ v d v d x \frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{du}{dx}+\frac{\partial z}{\partial v}\frac{d v}{dx} dxdz=uzdxdu+vzdxdv称为复合函数z对x的全导数.
  • 隐函数: 一般的, 设有函数 F ( x 1 , x 2 , . . . x n , y ) F(x_1,x_2,...x_n,y) F(x1,x2,...xn,y)=0, 如果存在一个n元函数 y = φ ( x ) , x = ( x 1 , x 2 , . . . , x n ) ∈ Ω ⊆ R n y=\varphi(\pmb x), \pmb x=(x_1,x_2,...,x_n)\in \Omega \subseteq \pmb R^n y=φ(xxx),xxx=(x1,x2,...,xn)ΩRRRn,使得将 y = φ ( x ) y=\varphi(x) y=φ(x)代入后成为恒等式 F ( x 1 , . . . , x n , φ ( x 1 , . . . x n ) ) ≡ 0 F(x_1,...,x_n,\varphi(x_1,...x_n))\equiv0 F(x1,...,xn,φ(x1,...xn))0则称 y = φ ( x ) y=\varphi(x) y=φ(x) F F F确定的隐函数.
  • 二元函数带Lagrange余项的Taylor公式: 设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y),在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)附近有连续的二阶偏导数, ( x 0 + Δ x , y 0 + Δ y ) ∈ U ( x 0 , y 0 ) (x_0+\Delta x,y_0+\Delta y)\in \pmb U(x_0,y_0) (x0+Δx,y0+Δy)UUU(x0,y0),则存在 θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)使得 f ( x 0 + Δ x , y 0 + Δ y ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + R 1 f(x_0+\Delta x,y_0+\Delta y)=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+R_1 f(x0+Δx,y0+Δy)=fx(x0,y0)Δx+fy(x0,y0)Δy+R1,其中 R 1 = 1 2 ! ( f x x Δ x 2 + 2 f x y Δ x Δ y + f y y Δ y 2 ∣ ( x 0 + θ Δ x , y 0 + θ Δ y ) R_1=\frac{1}{2!}(f_{xx}\Delta x^2+2f_{xy}\Delta x\Delta y+f_{yy}\Delta y^2|_{(x_0+\theta\Delta x,y_0+\theta\Delta y)} R1=2!1(fxxΔx2+2fxyΔxΔy+fyyΔy2(x0+θΔx,y0+θΔy)
  • 多元函数Taylor公式: 为将二元函数泰勒公式推广到n元, 我们将二元公式写成矩阵形式.令 x 0 = ( x 0 , y 0 ) T , x 0 + Δ x = ( x 0 + Δ x , y 0 + Δ y ) T , ∇ f ( x 0 , y 0 ) = ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) T , Δ x = ( Δ x 0 , Δ y 0 ) T \pmb x_0=(x_0,y_0)^T,\pmb x_0+\Delta \pmb x=(x_0+\Delta x ,y_0+\Delta y)^T,\\[2ex]\nabla f(x_0,y_0)=(f_x(x_0,y_0),f_y(x_0,y_0))^T,\Delta \pmb x=(\Delta x_0,\Delta y_0)^T xxx0=(x0,y0)T,xxx0+Δxxx=(x0+Δx,y0+Δy)T,f(x0,y0)=(fx(x0,y0),fy(x0,y0))T,Δxxx=(Δx0,Δy0)T, 则泰勒公式中的一阶导数部分可以写成梯度 ∇ f \nabla f f Δ x \Delta \pmb x Δxxx的内积形式, 即 ( f x Δ x + f y Δ y ) ∣ ( x 0 . y 0 ) = < ∇ f ( x 0 , y 0 ) , Δ x > (f_x\Delta x+f_y\Delta y)|_{(x_0.y_0)}=<\nabla f(x_0,y_0),\Delta \pmb x> (fxΔx+fyΔy)(x0.y0)=<f(x0,y0),Δxxx> R 1 R_1 R1是关于 Δ x , Δ y \Delta x,\Delta y Δx,Δy的一个二次型, 其系数矩阵为 H f ( x 0 + θ Δ x ) = [ f x x f x y f x y f y y ] ∣ ( x 0 + θ Δ x ) H_f(\pmb x_0+\theta\Delta \pmb x)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{xy}&f_{yy}\end{bmatrix}|_{(\pmb x_0+\theta \Delta \pmb x)} Hf(xxx0+θΔxxx)=[fxxfxyfxyfyy](xxx0+θΔxxx)称为函数 f f f x 0 + θ Δ x \pmb x_0+\theta\Delta \pmb x xxx0+θΔxxx处的Hesse矩阵, 故二次型的矩阵形式为: R 1 = 1 2 ! ( Δ x ) T H f ( x 0 + θ Δ x ) Δ x R_1=\frac{1}{2!}(\Delta \pmb x)^TH_f(\pmb x_0+\theta \Delta \pmb x)\Delta \pmb x R1=2!1(Δxxx)THf(xxx0+θΔxxx)Δxxx
    这样, 我们就可以将Taylor公式写成如下的矩阵形式: f ( x 0 + Δ x ) = f ( x 0 ) + < ∇ f ( x 0 ) , Δ x > + 1 2 ! ( Δ x ) T H f ( x 0 + θ Δ x ) Δ x f(\pmb x_0+\Delta \pmb x)=f(\pmb x_0)+<\nabla f(\pmb x_0),\Delta\pmb x>+\frac{1}{2!}(\Delta \pmb x)^TH_f(\pmb x_0+\theta \Delta \pmb x)\Delta \pmb x f(xxx0+Δxxx)=f(xxx0)+<f(xxx0),Δxxx>+2!1(Δxxx)THf(xxx0+θΔxxx)Δxxx
    由于 H f \pmb H_f HHHf的元素有 f f f的二阶偏导数构成, 而 f f f的所有二阶偏导数均连续, 可以证明 ( Δ x ) T H f ( x 0 + θ Δ x ) Δ x = ( Δ x ) T H f ( x 0 ) Δ x + o ( ∣ ∣ Δ x ∣ ∣ 2 ) (\Delta \pmb x)^T\pmb H_f(\pmb x_0+\theta \Delta \pmb x)\Delta \pmb x=(\Delta \pmb x)^T\pmb H_f(\pmb x_0)\Delta \pmb x+o(||\Delta \pmb x||^2) (Δxxx)THHHf(xxx0+θΔxxx)Δxxx=(Δxxx)THHHf(xxx0)Δxxx+o(Δxxx2)由此得到带有Peano余项的二阶Taylor公式: f ( x 0 + Δ x ) = f ( x 0 ) + < ∇ f ( x 0 ) , Δ x > + 1 2 ! ( Δ x ) T H f ( x 0 ) Δ x + o ( ∣ ∣ Δ x ∣ ∣ 2 ) f(\pmb x_0+\Delta \pmb x)=f(\pmb x_0)+<\nabla f(\pmb x_0),\Delta \pmb x>+\frac{1}{2!}(\Delta \pmb x)^T\pmb H_f(\pmb x_0)\Delta \pmb x+o(||\Delta \pmb x||^2) f(xxx0+Δxxx)=f(xxx0)+<f(xxx0),Δxxx>+2!1(Δxxx)THHHf(xxx0)Δxxx+o(Δxxx2)
  • f ( x ) f(\pmb x) f(xxx)是定义在区域 Ω ⊆ R n \Omega \subseteq \pmb R^n ΩRRRn内的n元函数, 若 f f f Ω \Omega Ω内连续, 则称 f f f Ω \Omega Ω上的 C ( 0 ) C^{(0)} C(0)类函数, 记为 f ∈ C ( 0 ) ( Ω ) f\in C^{(0)}(\Omega) fC(0)(Ω),或 C ( Ω ) C(\Omega) C(Ω); 若 f f f Ω \Omega Ω内有连续的 m ( m > = 1 , m(m>=1, m(m>=1,m为正整数), 则称 f f f Ω \Omega Ω上的 C ( m ) C^{(m)} C(m)类函数, 记作 f ∈ C ( m ) ( Ω ) f\in C^{(m)}(\Omega) fC(m)(Ω).
  • 设n元函数 f ∈ C ( 2 ) ( U ( x 0 ) ) , x 0 + Δ x ∈ U ( x 0 ) f\in C^{(2)}(U(\pmb x_0)),\pmb x_0+\Delta \pmb x\in U(\pmb x_0) fC(2)(U(xxx0)),xxx0+ΔxxxU(xxx0),其中, x 0 = ( x 0 , 1 , x 0.2 , . . . , x 0 , n ) T ∈ R n , Δ x = ( Δ x 1 , Δ x 2 , . . . , Δ x n ) T \pmb x_0=(x_{0,1},x_{0.2},...,x_{0,n})^T\in \pmb R^n,\Delta \pmb x=(\Delta x_1,\Delta x_2,...,\Delta x_n)^T xxx0=(x0,1,x0.2,...,x0,n)TRRRn,Δxxx=(Δx1,Δx2,...,Δxn)T则存在 θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)使得 f ( x 0 + Δ x ) = f ( x 0 ) + ∑ i = 1 n ∂ f ( x 0 ) ∂ x i Δ x i + R 1 f(\pmb x_0+\Delta \pmb x)=f(\pmb x_0)+\sum_{i=1}^n \frac{\partial f(\pmb x_0)}{\partial x_i}\Delta x_i+R_1 f(xxx0+Δxxx)=f(xxx0)+i=1nxif(xxx0)Δxi+R1同样可写成上面的矩阵形式 f ( x 0 + Δ x ) = f ( x 0 ) + < ∇ f ( x 0 ) , Δ x > + 1 2 ! ( Δ x ) T H f ( x 0 + θ Δ x ) Δ x f(\pmb x_0+\Delta x)=f(x_0)+<\nabla f(x_0),\Delta x>+\frac{1}{2!}(\Delta \pmb x)^TH_f(\pmb x_0+\theta \Delta \pmb x)\Delta \pmb x f(xxx0+Δx)=f(x0)+<f(x0),Δx>+2!1(Δxxx)THf(xxx0+θΔxxx)Δxxx
  • 曲面参数方程: 一般的, 曲面S可以看作是平面上某一区域D在空间 O x y z O_{xyz} Oxyz的某一连续映射的像, 从而S的方程可表示为 x = x ( u , v ) , y = y ( u , v ) , z = z ( u , v ) ,      ( u , v ) ∈ D r = r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D x=x(u,v), y=y(u,v),z=z(u,v),\ \ \ \ (u,v)\in D\\[2ex] \pmb r=\pmb r(u,v)=(x(u,v),y(u,v),z(u,v)),(u,v)\in D x=x(u,v),y=y(u,v),z=z(u,v),    (u,v)Drrr=rrr(u,v)=(x(u,v),y(u,v),z(u,v)),(u,v)D称为曲面的参数方程.

相关性质

  • lim ⁡ k → ∞ x k = a \lim_{k\to \infty}{x_k}=a limkxk=a的充要条件是 ∀ i = 1 , 2 , . . . n , 都 有 lim ⁡ k → ∞ x k , i = a i \forall i=1,2,...n,都有\lim_{k\to \infty}{x_{k,i}}=a_i i=1,2,...n,klimxk,i=ai
  • 收敛点列的极限唯一
  • 收敛点列必有界
  • 收敛点列满足极限符合四则运算
  • 收敛点列的子列同样收敛于该极限
  • 有界点列必有收敛子列, x k {x_k} xk的收敛子列的极限称为 x k {x_k} xk的极限点
  • x k x_k xk是柯西点列的充要条件是 ∀ i = 1 , 2 , . . . , n , x k , i 都 是 柯 西 数 列 . \forall i= 1,2,...,n,x_{k,i}都是柯西数列. i=1,2,...,n,xk,i西.
  • 柯西收敛原理:
    x k x_k xk收敛的充要条件是 x k x_k xk是柯西点列.
  • 单点集和有限点集的导集为空集,即单点集和有限点集一定是闭集.
  • a ∈ A ′ a\in A' aA充要于 ∀ ε > 0 , U ˚ ( a , ε ) ⋂ A ≠ ϕ \forall \varepsilon >0,\mathring{U}(a,\varepsilon)\bigcap A \neq \phi ε>0,U˚(a,ε)A=ϕ,也就说,a为A的聚点当且仅当a的任何去心邻域中都含有A的点.
  • 任意多个开集的并集为开集,
  • 有限多个开集的交集为开集,
  • 空 集 ϕ 和 全 空 间 R n 空集\phi和全空间R^n ϕRn是开集.
  • 任意多个闭集的交集为闭集
  • 有限多个闭集的并集是闭集
  • 任何凸集都是连通的,任何凸开集都是区域.
  • 可微必要条件: 若 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微, 则
    (1). f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续.
    (2). f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处两个偏导都存在, 且 a 1 = f x ( x 0 , y 0 ) , a 2 = f y ( x 0 , y 0 ) a_1=f_x(x_0,y_0), a_2=f_y(x_0,y_0) a1=fx(x0,y0),a2=fy(x0,y0).
  • 可微充分条件:若 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的两个偏导数都连续, 则 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微.
  • f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可微, 则函数 f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)沿任意 p m b l pmb l pmbl方向的方向导数均存在, 且
    δ f l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β . \frac{\delta f}{\pmb l}|_{_(x_0,y_0)}=f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta. lllδf(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ.
    其中 l \pmb l lll方向上的单位向量是 e l = ( c o s α , c o s β ) \pmb e_l=(cos\alpha,cos\beta) eeel=(cosα,cosβ), 由此可知当 f f f x 0 \pmb x_0 xxx0处可微时, f f f x 0 \pmb x_0 xxx0处沿任意方向 l \pmb l lll的方向导数均存在.
  • 设二元函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微, 则 f f f在该点的梯度一定存在, 且 g r a d f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j \pmb{grad}f(x_0,y_0)=f_x(x_0,y_0)\pmb i+f_y(x_0,y_0)\pmb j gradgradgradf(x0,y0)=fx(x0,y0)iii+fy(x0,y0)jjj
  • f x y f_{xy} fxy f y x f_{yx} fyx都在点P处连续时, 则在点P出有 f x y = f y x f_{xy}=f_{yx} fxy=fyx, 即二阶混合偏导数与求导次序无关.
  • 一阶全微分形式的不变性:设有函数 z = f ( u , v ) z=f(u,v) z=f(u,v)与函数 u = φ ( x , y ) , v = ϕ ( x , y ) u=\varphi(x,y), v=\phi(x,y) u=φ(x,y),v=ϕ(x,y)复合,则复合函数全微分为 d z = ∂ z ∂ x d x + ∂ z ∂ y d y = ∂ z ∂ u d u + ∂ z ∂ v d v dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=xzdx+yzdy=uzdu+vzdv高阶全微分不具有微分形式不变性.
  • 隐函数存在定理: 如果二元函数 F ( x , y ) F(x,y) F(x,y)满足:
    (1). F ( x 0 , y 0 ) F(x_0,y_0) F(x0,y0)=0;
    (2). 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域中有连续的偏导数;
    (3). F y ( x 0 , y 0 ) ≠ 0 F_y(x_0,y_0)\neq 0 Fy(x0,y0)=0
    则方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域中唯一确定了一个具有连续导数的函数 y = f ( x ) y=f(x) y=f(x),它满足 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0) F ( x , f ( x 0 ) ) = 0 F(x,f(x_0))=0 F(x,f(x0))=0, 且 d y d x = − F x F y \frac{dy}{dx}=-\frac{F_x}{F_y} dxdy=FyFx
  • 极大值求法: 先求驻点, 再分别求驻点的海斯矩阵, 判断矩阵是否正定. 若正定, 为极小值, 若负定, 为极大值
    Hesse矩阵: f x x ( P 0 ) = A , f x y ( P 0 ) = B , f y y ( P 0 ) = C , f_{xx}(P_0)=A,f_{xy}(P_0)=B,f_{yy}(P_0)=C, fxx(P0)=A,fxy(P0)=B,fyy(P0)=C,则海森矩阵为 H f ( P 0 ) = [ A B C D ] \pmb H_f(P_0)=\begin{bmatrix}A&B\\C&D\end{bmatrix} HHHf(P0)=[ACBD]
    判断正定方法: 若 A > 0 , A C − B 2 > 0 A>0, AC-B^2>0 A>0,ACB2>0矩阵正定, 极小值
    A < 0 , A C − B 2 > 0 A<0,AC-B^2>0 A<0,ACB2>0,矩阵负定, 极大值
    A C − B 2 < 0 AC-B^2<0 ACB2<0, P 0 P_0 P0不是极值.
  • 求最值方法: 求出所有驻点处, 偏导数不存在点的函数值, 再求出边界上函数的最值, 对比得出最值.
  • 拉格朗日乘数法: 求条件极值时, 构造拉格朗日函数 L ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) L(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y) L(x,y,λ)=f(x,y)+λφ(x,y),分别使 L x , L y , L λ L_x,L_y,L_\lambda Lx,Ly,Lλ等于零, 联立方程组解得极值.
  • 弧长公式: s = ∫ α β x ˙ ( t ) 2 + y ˙ ( t ) 2 d t s=\int_\alpha^\beta\sqrt{\dot x(t)^2+\dot y(t)^2}dt s=αβx˙(t)2+y˙(t)2 dt, 或 s = ∫ α β [ ρ ( θ ) ] 2 + [ ρ ′ ( θ ) ] 2 d θ s=\int_\alpha^\beta\sqrt{[\rho(\theta)]^2+[\rho'(\theta)]^2}d\theta s=αβ[ρ(θ)]2+[ρ(θ)]2 dθ
  • 曲线的切线及切平面: 切线: x − x ( t 0 ) x ˙ ( t 0 ) = y − y ( t 0 ) y ˙ ( t 0 ) = z − z ( t 0 ) z ˙ ( t 0 ) \frac{x-x(t_0)}{\dot x(t_0)}=\frac{y-y(t_0)}{\dot y(t_0)}=\frac{z-z(t_0)}{\dot z(t_0)} x˙(t0)xx(t0)=y˙(t0)yy(t0)=z˙(t0)zz(t0)
    或者: x − x 0 1 = y − y ( x 0 ) y ˙ ( x 0 ) = z − z ( x 0 ) z ˙ ( x 0 ) \frac{x-x_0}{1}=\frac{y-y(x_0)}{\dot y(x_0)}=\frac{z-z(x_0)}{\dot z(x_0)} 1xx0=y˙(x0)yy(x0)=z˙(x0)zz(x0)
  • 曲面法向量: ( r u × r v ) ( u 0 , v 0 ) = ( ∂ ( y , z ) ∂ ( u , v ) , ∂ ( z , x ) ∂ ( u , v ) , ∂ ( x , y ) ∂ ( u , v ) ) ( u 0 , v 0 ) = ( A , B , C ) (\pmb r_u\times\pmb r_v)_{(u_0,v_0)}=(\frac{\partial(y,z)}{\partial(u,v)},\frac{\partial(z,x)}{\partial(u,v)},\frac{\partial(x,y)}{\partial(u,v)})_({u_0,v_0)}=(A,B,C) (rrru×rrrv)(u0,v0)=((u,v)(y,z),(u,v)(z,x),(u,v)(x,y))(u0,v0)=(A,B,C)
    若偏导数在区域内连续, 称曲面S是光滑曲面, .将x,y看作参数, 曲面参数方程: r ( x , y ) = ( x , y , z ( x , y ) ) \pmb r(x,y)=(x,y,z(x,y)) rrr(x,y)=(x,y,z(x,y)),
    r x = ( 1 , 0 , z x ) = ( 1 , 0 , − F x F z ) , r y = ( 0 , 1 , z y ) = ( 0 , 1 , − F y F z ) r x × r y = ( F x F z , F y F z , 1 ) \pmb r_x=(1,0,z_x)=(1,0,-\frac{F_x}{F_z}),\pmb r_y=(0,1,z_y)=(0,1,-\frac{F_y}{F_z})\\[2ex] \pmb r_x\times\pmb r_y=(\frac{F_x}{F_z},\frac{F_y}{F_z},1) rrrx=(1,0,zx)=(1,0,FzFx),rrry=(0,1,zy)=(0,1,FzFy)rrrx×rrry=(FzFx,FzFy,1)
    切平面方程为: F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0
    若曲面方程为 z = f ( x , y ) z=f(x,y) z=f(x,y),切平面方程可写成 F x ( x − x 0 ) + F y ( y − y 0 ) = z − z 0 F_x(x-x_0)+F_y(y-y_0)=z-z_0 Fx(xx0)+Fy(yy0)=zz0

相关例题

1.证明 lim ⁡ x → 0   y → 0 x 2 y x 2 + y 2 = 0 \lim_{x\to0\ y\to0}\frac{x^2y}{x^2+y^2}=0 x0 y0limx2+y2x2y=0
分析: 根据基本不等式,有 ∣ x ∣ ∣ x y ∣ < = 1 2 ∣ x ∣ ( x 2 + y 2 ) , |x||xy|<=\frac{1}{2}|x|(x^2+y^2), xxy<=21x(x2+y2),化简得 x 2 y x 2 + y 2 < = 1 2 ∣ x ∣ < = 1 2 x 2 + y 2 < ε \frac{x^2y}{x^2+y^2}<=\frac{1}{2}|x|<=\frac{1}{2}\sqrt{x^2+y^2}<\varepsilon x2+y2x2y<=21x<=21x2+y2 <ε.
2. 证明 ( x , y ) → ( 0 , 0 ) , f ( x , y ) = ( x 2 + y 2 ) s i n x 2 + y 2 = 0 (x,y)\to(0,0),f(x,y)=(x^2+y^2)sin\sqrt{x^2+y^2}=0 (x,y)(0,0),f(x,y)=(x2+y2)sinx2+y2 =0
分析: 直接进行三角放缩即可.
3. 设 f ( x , y ) = { x s i n 1 y + y s i n 1 x ,   x y ≠ 0 , 0 ,   x y = 0. f(x,y)=\begin{cases} xsin\frac{1}{y}+ysin\frac{1}{x}, \ xy\neq0,\\ 0,\ xy=0. \end{cases} f(x,y)={xsiny1+ysinx1, xy=0,0, xy=0.
求证 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 \lim_{(x,y)\to(0,0)}f(x,y)=0 lim(x,y)(0,0)f(x,y)=0.
分析: 三角放缩, 原式<= ∣ x ∣ + ∣ y ∣ < = 2 x 2 + y 2 . |x|+|y|<=2\sqrt{x^2+y^2}. x+y<=2x2+y2 .
4. 求 lim ⁡ ( x , y ) → ( 0 , 0 ) ( x 2 + y 2 ) x y \lim_{(x,y)\to(0,0)}(x^2+y^2)^{xy} lim(x,y)(0,0)(x2+y2)xy
分析: 将原式化为e的指数形式,即 原 式 = e x y l n   ( x 2 + y 2 ) 原式=e^{xyln\ (x^2+y^2)} =exyln (x2+y2),再将次数单独拿出 0 < = x y l n   ( x 2 + y 2 ) < = 1 2 ( x 2 + y 2 ) l n   ( x 2 + y 2 ) , 设 t = x 2 + y 2 , 进 行 极 限 运 算 即 可 0<=xyln\ (x^2+y^2)<=\frac{1}{2}(x^2+y^2)ln\ (x^2+y^2),设t=x^2+y^2,进行极限运算即可 0<=xyln (x2+y2)<=21(x2+y2)ln (x2+y2),t=x2+y2,.
5. 求 f ( x ) = { x y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x)=\begin{cases} \frac{xy}{x^2+y^2},x^2+y^2\neq 0\\ 0,x^2+y^2=0 \end{cases} f(x)={x2+y2xy,x2+y2=00,x2+y2=0 的极限.
分析: 先确定极限是否存在, 分别从 y = x , y = − x y=x,y=-x y=x,y=x,趋近于(0,0),发现极限不相等,故极限不存在.
6. 讨论 lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 y + x y + x 2 y 2 x + y \lim_{(x,y)\to(0,0)}\frac{x^3y+xy+x^2y^2}{x+y} (x,y)(0,0)limx+yx3y+xy+x2y2的极限.
分析: 分别以 y = k x , y = a x 2 + b x , x + y = x 3 y=kx,y=ax^2+bx,x+y=x^3 y=kx,y=ax2+bx,x+y=x3的形式趋近于(0,0), 求得极限为0,0,-1,估极限不存在.
7. 求 f ( x , y ) = { ( x 2 + y 2 ) s i n 1 x 2 + y 2 , x 2 + y 2 ≠ 0 0       , x 2 + y 2 = 0. f(x,y)=\begin{cases} (x^2+y^2)sin\frac{1}{x^2+y^2},x^2+y^2\neq0\\ 0 \ \ \ \ \ ,x^2+y^2=0. \end{cases} f(x,y)={(x2+y2)sinx2+y21,x2+y2=00     ,x2+y2=0.的极限.
分析: 设 x = r c o s θ , y = r s i n θ x=rcos\theta,y=rsin\theta x=rcosθ,y=rsinθ,代入可求极限.
8. 讨论 f ( x , y ) = { x y x 2 + y 2 ,   x 2 + y 2 ≠ 0 0 ,   x 2 + y 2 = 0 f(x,y)=\begin{cases}\\ \frac{xy}{\sqrt{x^2+y^2}},\ x^2+y^2\neq 0\\[2ex] 0,\ x^2+y2=0 \end{cases} f(x,y)=x2+y2 xy, x2+y2=00, x2+y2=0 ( 0 , 0 ) (0,0) (0,0)处的连续性,可微性.
解: 由 ∣ x y x 2 + y 2 − 0 ∣ < = ∣ y ∣ < = x 2 + y 2 , |\frac{xy}{\sqrt{x^2+y^2}}-0|<=|y|<=\sqrt{x^2+y^2}, x2+y2 xy0<=y<=x2+y2 ,易见 f f f在(0,0)处连续, 再由偏导数的定义, 可得 f x ( 0 , 0 ) = lim ⁡ Δ x → 0 f ( 0 + Δ x , 0 ) − f ( 0 , 0 ) Δ x = 0 f_x(0,0)=\lim_{\Delta x\to 0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=0 fx(0,0)=Δx0limΔxf(0+Δx,0)f(0,0)=0
同理 f y ( 0 , 0 ) = 0 f_y(0,0)=0 fy(0,0)=0,故 f f f在(0,0)处的两个偏导数均存在.
下面利用反证法证明 f f f在点(0,0)处不可微.假定 f ( x , y ) f(x,y) f(x,y)在点(0,0)处可微,则由可微的定义得
Δ f = d f ( 0 , 0 ) + o ( ρ ) = f x ( 0 , 0 ) Δ x + f y ( 0 , 0 ) Δ y + o ( ρ ) = o ( ρ ) \Delta f=df(0,0)+o(\rho)=f_x(0,0)\Delta x+f_y(0,0)\Delta y+o(\rho)=o(\rho) Δf=df(0,0)+o(ρ)=fx(0,0)Δx+fy(0,0)Δy+o(ρ)=o(ρ)
其中 o ( ρ ) o(\rho) o(ρ)是当 ρ → 0 \rho\to0 ρ0时关于 ρ \rho ρ得高阶无穷小. 因此,极限 lim ⁡ ρ → 0 Δ f ρ \lim_{\rho\to 0}\frac{\Delta f}{\rho} limρ0ρΔf存在且为0.但
Δ f = f ( 0 + Δ x , 0 + Δ y ) − f ( 0 , 0 ) = Δ x Δ y Δ x 2 + Δ y 2 \Delta f=f(0+\Delta x,0+\Delta y)-f(0,0)=\frac{\Delta x\Delta y}{\sqrt{\Delta x^2+\Delta y^2}} Δf=f(0+Δx,0+Δy)f(0,0)=Δx2+Δy2 ΔxΔy
而经过计算,极限 lim ⁡ ρ → 0 Δ f ρ = lim ⁡ ρ → 0 Δ x Δ y Δ x 2 + Δ y 2 \lim_{\rho\to 0}\frac{\Delta f}{\rho}=\lim_{\rho\to0}\frac{\Delta x\Delta y}{\Delta x^2+\Delta y^2} ρ0limρΔf=ρ0limΔx2+Δy2ΔxΔy不存在,故f在(0,0)处不可微.
9. 设 z = f ( x , x y ) z=f(x,xy) z=f(x,xy),其中 z = f ( u , v ) z=f(u,v) z=f(u,v)可微,求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz
分析: 对多元函数进行微分时, 首先判断是否可微(若题中为直接给出可微).
10. 设 f ( u , v ) f(u,v) f(u,v)可微, 求 z = f ( x y , y x ) z=f(\frac{x}{y},\frac{y}{x}) z=f(yx,xy)的偏导数.
分析: 可直接求偏导, 也可以运用一阶全微分形式不变性求.
11. 若 f ( x , y ) f(x,y) f(x,y)满足 f ( t x , t y ) = t k f ( x , y ) ( k ∈ Z + ) f(tx,ty)=t^kf(x,y)(k\in Z_+) f(tx,ty)=tkf(x,y)(kZ+), 则称 f ( x , y ) f(x,y) f(x,y)是k次其次函数.证明:k次齐次函数满足 x f x ( x , y ) + y f y ( x , y ) = k f ( x , y ) xf_x(x,y)+yf_y(x,y)=kf(x,y) xfx(x,y)+yfy(x,y)=kf(x,y)
分析: 观察到偏导系数为x和y,考虑将t看作变量, x,y看作常量, 对 f ( t x , t y ) = t k f ( x , y ) ( k ∈ Z + ) f(tx,ty)=t^kf(x,y)(k\in Z_+) f(tx,ty)=tkf(x,y)(kZ+)两边同时对t求导, 再将t=1带入即可证明.

  • 关于复合函数求偏导相关计算:数学分析下p59t7,p58t29,t28,t26.
  1. φ ( u , v ) \varphi(u,v) φ(u,v)具有连续的一阶偏导数, 方程 φ ( c x − a z , c y − b z ) = 0 \varphi(cx-az,cy-bz)=0 φ(cxaz,cybz)=0确定了函数 z = z ( x , y ) z=z(x,y) z=z(x,y), 求 a z x + b z y az_x+bz_y azx+bzy,其中, a , b , c a,b,c a,b,c均为常数.
    解法一: 设函数 F ( x , y , z ) = φ ( c x − a z , c y − b z ) F(x,y,z)=\varphi(cx-az,cy-bz) F(x,y,z)=φ(cxaz,cybz),则 z ( x , y ) z(x,y) z(x,y)是由F确定的隐函数, z x = − F x F z , z y = − F y F z . z_x=-\frac{F_x}{F_z}, z_y=-\frac{F_y}{F_z}. zx=FzFx,zy=FzFy.
    再利用 φ \varphi φ来求出 F x , F y F_x,F_y Fx,Fy.(此时z看作与x,y平行的变量)
    解法二: 通过一阶全微分形式不变性, 对 φ = 0 \varphi=0 φ=0进行全微分
    d φ = φ 1 ( c d x − a d z ) + φ 2 ( c d y − b d z ) = 0 d\varphi=\varphi_1(cdx-adz)+\varphi_2(cdy-bdz)=0 dφ=φ1(cdxadz)+φ2(cdybdz)=0
    化简可得 d z = c φ 1 d x + c φ 2 d y a φ 1 + b φ 2 dz=\frac{c\varphi_1dx+c\varphi_2dy}{a\varphi_1+b\varphi_2} dz=aφ1+bφ2cφ1dx+cφ2dy可得出 z x , z y z_x, z_y zx,zy,带入即可.
    解法三: 直接两边求x,y得偏导, 可解出 z x , z y z_x,z_y zx,zy.(此时,z看作x,y的函数)
  2. 设方程 x y z + x 2 + y 2 + z 2 = 2 xyz+\sqrt{x^2+y^2+z^2}=\sqrt2 xyz+x2+y2+z2 =2 确定了函数 z ( x , y ) z(x,y) z(x,y),求点 ( 1 , 0 , − 1 ) (1,0,-1) (1,0,1)的全微分dz.
    解法一: 利用一阶全微分形式不变性, 对给出方程两边求全微分, 再将 ( 1 , 0 , − 1 ) (1,0,-1) (1,0,1)代入可求出dz
    解法二: 利用求导公式, 求出 z x , z y z_x,z_y zx,zy,再代入 d z = z x d x + z y d y dz=z_xdx+z_ydy dz=zxdx+zydy即可.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值