基础练习 杨辉三角

本文介绍了杨辉三角形的性质和其在编程竞赛中的应用。提供了AC源码,讨论了不同实现方法的时间复杂度,并强调了在处理大数据时的优化策略。通过一个具体的例子展示了如何输出前n行杨辉三角形,同时指出初始化数组的细节和避免超时的关键步骤。
摘要由CSDN通过智能技术生成

基础练习 杨辉三角形
题目来源:蓝桥杯练习系统 ID: 10 原题链接: http://lx.lanqiao.cn/problem.page?gpid=T10

问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1  
1 1 
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。

先上AC源码(完美版)

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 44;
//数组长度,不要定义太大可能会超时,所以最好用vector,不过n<=32就不用vector
int n, a[MAXN][MAXN];
int main() {
	cin >> n;//读入
	a[1][1] = 1;//初始化
	for (int i = 1; i <= n; i++) {//行
		for (int j = 1; j <= i; j++) {//列
			if (!a[i][j])a[i][j] = a[i - 1][j] + a[i - 1][j - 1];//计算数字
			cout << a[i][j] << " ";//输出
		}
		cout << endl;//换行
	}
	return 0;
}

这题有很多种方法但是数据大就会超时,再上一段不完美的代码

#include<stdio.h> 
 
int main()  
{  
 	int a[35][35];
 	int n,i,j;
 	
 	scanf("%d",&n);
 	
 	a[0][0]=1;
 	a[1][0]=1;
 	a[1][1]=1;
 	for(i=2;i<n;i++){
 		for(j=0;j<=i;j++){
 			if(j==0){
 				a[i][j]=1;
 				continue;
 			}
 			if(i==j){
 				a[i][j]=1;
 				continue;
 			}
 			a[i][j]=a[i-1][j-1]+a[i-1][j];
 		}
 	}
 	for(i=0;i<n;i++){
 		for(j=0;j<=i;j++){
 			printf("%d ",a[i][j]);
 		}
 		puts("");
 	}
	 
    return 0;  
} 

这个代码是之前的代码时间复杂度的2倍,所以要边初始化边输出
观察可以发现一个很简单的规律a[i - 1][j] + a[i - 1][j - 1],在main外建立数组a[MAXN][MAXN],初始化全为0,第二次初始化a[1][1] = 1,
注意:数组从1算不能从0算
这样初始化会让斜边和竖着的都为1,第三次初始化(输出)a[i - 1][j] + a[i - 1][j - 1]

const int MAXN = 44;
//数组长度,不要定义太大可能会超时,所以最好用vector,不过n<=32就不用vector
int n, a[MAXN][MAXN];

然后就是读入和第二次初始化

cin >> n;
a[1][1] = 1;//重点!!
//思考:为什么斜边和竖着的都会变成1

最后写循环初始化
三角形有n行n列
行为1 , 2, 3, ……, n
所以先写外层循环

for (int i = 1; i <= n; i++) {
	//Do something in
}

内层同理,列数=行数

for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= i; j++) {
		//Do something in
	}
}

计算
注意:只有当前数为0才可以计算

for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= i; j++) {
		if (!a[i][j])a[i][j] = a[i - 1][j] + a[i - 1][j - 1];
		cout << a[i][j] << " ";
	}
}

以上就是最简代码且时间复杂度最少的代码
本人第一次写博客,有一些不足,请见谅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值