基础练习 杨辉三角形
题目来源:蓝桥杯练习系统 ID: 10 原题链接: http://lx.lanqiao.cn/problem.page?gpid=T10
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
先上AC源码(完美版)
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 44;
//数组长度,不要定义太大可能会超时,所以最好用vector,不过n<=32就不用vector
int n, a[MAXN][MAXN];
int main() {
cin >> n;//读入
a[1][1] = 1;//初始化
for (int i = 1; i <= n; i++) {//行
for (int j = 1; j <= i; j++) {//列
if (!a[i][j])a[i][j] = a[i - 1][j] + a[i - 1][j - 1];//计算数字
cout << a[i][j] << " ";//输出
}
cout << endl;//换行
}
return 0;
}
这题有很多种方法但是数据大就会超时,再上一段不完美的代码
#include<stdio.h>
int main()
{
int a[35][35];
int n,i,j;
scanf("%d",&n);
a[0][0]=1;
a[1][0]=1;
a[1][1]=1;
for(i=2;i<n;i++){
for(j=0;j<=i;j++){
if(j==0){
a[i][j]=1;
continue;
}
if(i==j){
a[i][j]=1;
continue;
}
a[i][j]=a[i-1][j-1]+a[i-1][j];
}
}
for(i=0;i<n;i++){
for(j=0;j<=i;j++){
printf("%d ",a[i][j]);
}
puts("");
}
return 0;
}
这个代码是之前的代码时间复杂度的2倍,所以要边初始化边输出
观察可以发现一个很简单的规律a[i - 1][j] + a[i - 1][j - 1],在main外建立数组a[MAXN][MAXN],初始化全为0,第二次初始化a[1][1] = 1,
注意:数组从1算不能从0算
这样初始化会让斜边和竖着的都为1,第三次初始化(输出)a[i - 1][j] + a[i - 1][j - 1]
const int MAXN = 44;
//数组长度,不要定义太大可能会超时,所以最好用vector,不过n<=32就不用vector
int n, a[MAXN][MAXN];
然后就是读入和第二次初始化
cin >> n;
a[1][1] = 1;//重点!!
//思考:为什么斜边和竖着的都会变成1
最后写循环初始化
三角形有n行n列
行为1 , 2, 3, ……, n
所以先写外层循环
for (int i = 1; i <= n; i++) {
//Do something in
}
内层同理,列数=行数
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
//Do something in
}
}
计算
注意:只有当前数为0才可以计算
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
if (!a[i][j])a[i][j] = a[i - 1][j] + a[i - 1][j - 1];
cout << a[i][j] << " ";
}
}
以上就是最简代码且时间复杂度最少的代码
本人第一次写博客,有一些不足,请见谅