探秘大模型(LLMs):基础概念、架构差异与优劣剖析

探秘大模型(LLMs):基础概念、架构差异与优劣剖析

在人工智能飞速发展的当下,大模型(LLMs)已成为行业焦点,广泛应用于智能聊天、内容创作、智能翻译等诸多领域。深入了解大模型的基础概念、技术架构及性能优劣,不仅能让我们更好地把握这一前沿技术的发展脉络,还能为其在不同场景下的应用提供有力支撑。接下来,让我们一同揭开大模型的神秘面纱。
在这里插入图片描述

主流开源模型体系全景

目前,主流的开源模型体系主要分为三类,它们在架构设计和应用场景上各具特色。

  • prefix Decoder系:该体系模型在处理输入时采用双向注意力机制,这使得模型能够全面捕捉输入文本前后文的信息,就像我们阅读文章时会综合理解上下文一样。而在输出时则转换为单向注意力机制。其代表模型有ChatGLM、ChatGLM2以及U-PaLM等。这些模型在对话交互场景中表现出色,能够基于对输入的充分理解生成连贯且逻辑合理的回复。
  • causal Decoder系:此体系的模型采用从左到右的单向注意力机制,严格遵循只有后面的token才能看到前面的token的规则。这一特性使得它在文本生成任务中优势显著,比如小说创作、诗歌生成等场景,能够根据前文内容逐步生成自然流畅的后续文本。LLaMA-7B及其衍生物就是这一体系的典型代表。
  • Encoder-Decoder:该体系模型在输入阶段利用双向注意力机制,充分理解输入文本的含义,如同我们精读一篇文章时全面理解其内容。在输出时采用单向注意力机制。T5、Flan-T5、BART等模型属于这一体系,它们在自然语言处理的理解类任务,如文本摘要、问答系统中表现优异。

架构差异深度解析

prefix Decoder、causal Decoder和Encoder-Decoder这三种架构的核心区别在于attention mask的不同,这也导致了它们在功能和性能上的差异。

  • Encoder-Decoder:双向注意力机制用于输入,使模型能深度理解问题,在文本理解任务中表现良好,例如文本分类、语义理解等场景。然而,在长文本生成任务中,其效率较低,生成效果也不尽如人意。这是因为生成过程中需要不断处理长序列信息,而其架构在处理这种情况时存在一定局限性。
  • causal Decoder:作为自回归语言模型,它的预训练和下游应用保持一致。这种一致性使得它在文本生成任务中表现卓越,能够高效地生成高质量文本。同时,它具有较高的训练效率和强大的zero-shot能力,即无需针对特定任务进行微调就能处理新任务,还具备涌现能力,能完成一些复杂的任务,如复杂的故事创作、专业领域的文本生成等。
  • prefix Decoder:该架构的prefix部分的token之间可以相互可见,这种设计是causal Decoder和Encoder-Decoder的一种折中方案。虽然它在一定程度上兼顾了两者的特点,但也存在训练效率低的问题。不过,在一些对上下文关联要求较高且对训练效率要求相对较低的特定场景中,它能发挥独特的优势。

训练目标的多元探索

大模型的训练目标主要有语言模型和去噪自编码器两种,它们从不同角度优化模型性能。

  • 语言模型:其训练目标是根据已有词预测下一个词,通过最大化似然函数来实现。在训练效率方面,Causal Decoder结构会在所有token上计算损失,而Prefix Decoder只会在输出上计算损失,因此Causal Decoder的训练效率更高。这就好比在学习过程中,一种方法是全面复习所有知识点,另一种是只关注重点输出部分,前者虽然更全面但可能更耗时,后者则更有针对性。
  • 去噪自编码器:这种训练方式通过随机替换文本段,让模型学习恢复被打乱的文本。虽然实现难度较高,但能增强模型对文本的理解和纠错能力。GLM-130B、T5等模型采用了这种训练目标,使其在处理噪声数据或不完整数据时表现更出色。

涌现能力的成因探究

大模型的涌现能力一直是研究的热点,目前主要有两个猜想。一方面,任务的评价指标可能不够平滑,导致在模型参数增长过程中,能力提升的表现呈现出不连续的“涌现”现象。另一方面,复杂任务与子任务之间的关系也会影响涌现能力的表现。以一个由多个子任务构成的复杂任务为例,每个子任务随着模型的增长指标逐步提升,但从整体任务指标来看,可能会出现宏观上的涌现现象,而实际上子任务的效果是平滑增长的。

Decoder only结构的优势凸显

现在大部分大模型采用Decoder only结构,这主要基于多方面的考虑。在zero-shot能力方面,Decoder only结构在没有任何微调数据的情况下表现更好,能够更好地利用大规模无标注数据进行自监督学习。而Encoder-Decoder结构通常需要在一定量的标注数据上进行多任务微调才能发挥最佳性能。从理论层面分析,Encoder的双向注意力可能存在低秩问题,会削弱模型的表达能力,对于生成任务而言,引入双向注意力并没有实质性的优势。在同等参数量和推理成本下,Decoder only架构成为了最优选择。

大模型的全面解析

大模型通常是指参数规模在1亿以上的模型,随着技术的发展,万亿参数级别的模型也已出现。大语言模型(LLM)则是专注于语言处理的大模型,能够处理各种自然语言任务,如文本生成、翻译、问答等。大模型后面跟的175B、60B、540B等表示模型的参数个数,其中B代表Billion(十亿),例如175B意味着模型拥有1750亿个参数,ChatGPT的参数规模大约就是175B。

大模型的优势尽显

大模型具有诸多显著优势,使其在人工智能领域大放异彩。首先,它能够利用大量无标注数据训练通用模型,再通过少量有标注数据微调以适应特定任务,这种预训练和微调的模式大大降低了数据标注的成本和时间,同时提升了模型的泛化能力,使其能够在不同领域和任务中表现出色。其次,借助生成式人工智能技术,大模型可以创造出新颖且有价值的内容,包括图像、文本、音乐等,为创意产业、娱乐行业和教育领域带来了全新的体验和发展机遇。此外,大模型的涌现能力使其能够完成一些以往难以实现的复杂任务,如数学应用题求解、常识推理和符号操作等,充分展示了其强大的智能水平和推理能力。

大模型的挑战与应对

大模型在快速发展的同时,也面临着一系列严峻的挑战。在资源消耗方面,训练和运行大模型需要大量的计算资源和存储资源,这不仅带来了高昂的经济成本,还对环境造成了较大压力,例如训练一个GPT-3模型需要耗费约30万美元,并产生约284吨二氧化碳排放。数据质量和安全性问题也不容忽视,数据偏见、泄露和滥用等问题可能导致模型输出不准确或不道德,损害用户和社会的利益。此外,大模型在可解释性、可靠性和可持续性方面也面临挑战,如何理解和控制模型行为、保证模型的正确性和稳定性,以及平衡模型的效益和风险,都需要多领域的深入研究和广泛合作,以推动大模型技术的健康发展。

大模型(LLMs)作为人工智能领域的核心技术,在为我们带来无限可能的同时,也需要我们客观认识其优势与不足,积极应对各种挑战,推动这一技术朝着更加高效、安全、可靠的方向发展,为社会创造更大的价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值