Opencv+Java 二值化阀值自适应的问题

Opencv+Java 二值化阀值自适应的问题

给定阀值当光线有偏差的时候得到的图片也会不一样

	  //载入本地图片
       Mat srcMat = Imgcodecs.imread("D:\\Camera\\"+src+".png");
        //灰度
        Mat destMat = new Mat();
        Imgproc.cvtColor(srcMat, destMat, Imgproc.COLOR_RGB2GRAY);
        /*
         * 图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。
         * 转换为二值类型 将自适应阈值应用于数组。  该功能可以就地处理图像。
         * @param src源8位单通道图像。
         * @param dst与src大小和类型相同的目标映像。
         * @param maxValue分配给满足条件的像素的非零值
         * @paramAdaptiveMethod要使用的自适应阈值算法。
         * ADAPTIVE_THRESH_MEAN_C的计算方法是计算出领域的平均值再减去第七个参数double C的值。   --35  60
         * ADAPTIVE_THRESH_GAUSSIAN_C的计算方法是计算出领域的高斯均值再减去第七个参数double C的值。  --0 23
         * @param thresholdType阈值类型。
         * THRESH_BINARY = 0, 二进制阈值化 在运用该阈值类型的时候,先要选定一个特定的阈值量,比如:125,这样,新的阈值产生规则
         * 可以解释为大于125的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于125的像素点的灰度值设定为0。
         * THRESH_BINARY_INV = 1,反二进制阈值化 该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。
         * (在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255)
         * THRESH_TRUNC = 2,截断阈值化 同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。(
         * 例如:阈值选取为125,那小于125的阈值不改变,大于125的灰度值(230)的像素点就设定为该阈值)。
         * THRESH_TOZERO = 3, 阈值化为0 先选定一个阈值,然后对图像做如下处理:1 像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0。
         * THRESH_TOZERO_INV = 4,反阈值化为0 原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。
         * THRESH_MASK = 7,
         * THRESH_OTSU = 8,
         * THRESH_TRIANGLE = 16;
         * THRESH_OTSU和THRESH_TRIANGLE是作为优化算法配合THRESH_BINARY、THRESH_BINARY_INV、THRESH_TRUNC、THRESH_TOZERO以及THRESH_TOZERO_INV来使用的。
         * 当使用了THRESH_OTSU和THRESH_TRIANGLE两个标志时,输入图像必须为单通道。
         * @param blockSize用于计算像素阈值的像素邻域的大小:3、5、7,依此类推。
         * @param C从平均值或加权平均值中减去常数。 通常,它为正,但也可以为零或负。
         */
//        //二值
        Mat binaryMat = new Mat(destMat.height(), destMat.width(), CvType.CV_32F);
        Imgproc.adaptiveThreshold(destMat, binaryMat, 255,Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY,7, 5);

原图
在这里插入图片描述
自适应的效果
在这里插入图片描述
将blockSize调到199效果
在这里插入图片描述
## 标题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值