- 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree),还有的书翻译为霍夫曼树。
- 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近
术语
- 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路更多中分支的数目称为路径长度。
- 若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-12)结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
- 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted pathlength),权值越大的结点离根结点越近的二叉树才是最优二叉树。4
- WPL最小的就是赫夫曼树
解题思想
构成赫夫曼树的步骤:
5. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
6. 取出根节点权值最小的两颗二叉树
7. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
8. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
public static Node createHuffmanTree(int[] arr) {
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
while (true){
if (nodes.size() <= 1){
break;
}
//1. 先排序
Collections.sort(nodes);
//2.取出最小的2的结点
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
//3构建一颗新的二叉树
Node parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
nodes.remove(leftNode);
nodes.remove(rightNode);
nodes.add(parent);
}
return nodes.get(0);
}