【译】Apache Spark 数据建模之时间维度(一)

本文探讨了在数据分析中时间维度的重要性,并通过Apache Spark展示了如何进行日期相关的数据分析,包括日期函数的使用和挑战。文章介绍了日期维度的概念,阐述了其在不同分析中的重用、可扩展性和用户友好性的优点。还提供了使用日期维度进行股票数据连接和分析的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编译:诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作。

原文链接 :http://blog.madhukaraphatak.com/data-modeling-spark-part-1/


数据建模是数据分析重要的组成之一,正确的建立模型有助于用户更好地解答业务相关的问题。在过去几十年中,数据建模技术也一直是SQL数据仓库的基础。

Apache Spark作为新一代的数仓技术的代表,我们能够在 Spark 中使用早期的数据建模技术。这使得Spark data pineline 更加有效。

在本系列文章中,我将讨论spark中不同的数据建模。本系列的第一篇文章中将讨论如何使用日期维度。

数据分析中数据和时间的重要性

我们分析的大多数数据通常都包含日期或时间戳。例如,它可能是

  • 股票的交易日期

  • POS系统的交易时间

我们所做的很多分析通常都是关于日期或时间的。我们通常希望使用相同的方法对数据进行切分。

使用内置的Spark进行数据分析

本节讨论如何使用内置的spark日期函数进行数据分析。

苹果股票数据

在本例中,我们将使用苹果股票数据。以下是样本数据

Date Open High Low Close Volume AdjClose
2013-12-31 00:00:00 554.170013 561.279976 554.000023 561.019997 55771100 76.297771
2013-12-30 00:00:00 557.460022 560.089989 552.319984 554.519981 63407400 75.41378

加载到Spark Dataframe

下面的代码将数据加载到spark dataframe中。

val appleStockDf = sparkSession.read.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值