链接
题意:
给出一共n种颜色的变色龙,每种颜色变色龙有 a i a_i ai只,让你最后都将其变成第c种颜色,每次操作 将n-1只颜色不同的变色龙变成y只另一颜色的变色龙。(注意是n-1只变成y只)问最小操作数,和最后第c种颜色变色龙个数。
分析:
首先我们看,一种颜色的变色龙,经过一次操作要不就是-1,要不就是+y,所以每只变色龙只差一定是(y+1)的倍数。只有这样才有解。
所以最小操作数就是除第c种颜色之外最多的变色龙数量,最后一共多少只,直接用原本的总和加上多生成的(y-(n-1))*操作数。
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+7;
#define ll long long
ll a[maxn],n,m,y;
int main(){
cin>>n>>m>>y;
ll sum=0,num,cnt=0,x;
for(int i=1;i<=n;i++){
cin>>x;
if(i==m){
num=x;
}else {
a[++cnt]=x;
}
}
sort(a+1,a+1+cnt);
for(int i=1;i<n;i++){
if((a[cnt]-a[i])%(y+1)!=0){
puts("impossible");
return 0;
}
sum+=(a[cnt]-a[i])/(y+1);
}
cout<<a[cnt]<<" "<<(a[cnt]-sum)*y+num-sum<<endl;///新生成m色变色龙的数量,不是最后变成变色龙的数量。
return 0;
}