C . Colourful Chameleons(思维+模拟)

该博客讨论了一个关于变色龙颜色变换的问题,其中涉及n种不同颜色的变色龙,每次操作可以将n-1只不同颜色的变色龙变为y只另一种颜色。目标是找到最小的操作次数,使得所有变色龙最终变成第c种颜色,并计算最终的c种颜色变色龙数量。关键在于分析每次操作后变色龙数量的变化,确保每只变色龙数量差为(y+1)的倍数。提供的C++代码实现了一个解决方案,用于计算最小操作数和最终数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接

题意:

给出一共n种颜色的变色龙,每种颜色变色龙有 a i a_i ai只,让你最后都将其变成第c种颜色,每次操作 将n-1只颜色不同的变色龙变成y只另一颜色的变色龙。(注意是n-1只变成y只)问最小操作数,和最后第c种颜色变色龙个数。

分析:

首先我们看,一种颜色的变色龙,经过一次操作要不就是-1,要不就是+y,所以每只变色龙只差一定是(y+1)的倍数。只有这样才有解。
所以最小操作数就是除第c种颜色之外最多的变色龙数量,最后一共多少只,直接用原本的总和加上多生成的(y-(n-1))*操作数。

#include <bits/stdc++.h>
using namespace std;

const int maxn=2e5+7;
#define ll long long 
ll a[maxn],n,m,y;

int main(){
    cin>>n>>m>>y;
    ll sum=0,num,cnt=0,x;
    for(int i=1;i<=n;i++){
        cin>>x;
        if(i==m){
            num=x;
        }else {
            a[++cnt]=x;
        }
    }
    sort(a+1,a+1+cnt);    
    for(int i=1;i<n;i++){
        if((a[cnt]-a[i])%(y+1)!=0){
            puts("impossible");
            return 0;
        }
        sum+=(a[cnt]-a[i])/(y+1);
    }
    cout<<a[cnt]<<" "<<(a[cnt]-sum)*y+num-sum<<endl;///新生成m色变色龙的数量,不是最后变成变色龙的数量。    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值