提升50%!Presto如何提升Hudi表查询性能?

本文介绍了如何使用Apache Hudi的Clustering功能优化Presto查询性能。在Uber的实践中,Clustering显著减少了扫描数据量和CPU消耗,降低了查询延迟。通过异步Clustering Pipeline,实现了摄入和优化的并发执行,有效解决了小文件问题。未来,Hudi将进一步优化Clustering,包括更多用例、轻量级服务和二级索引等。
摘要由CSDN通过智能技术生成

分享一篇关于使用Hudi Clustering来优化Presto查询性能的talk

在这里插入图片描述

talk主要分为如下几个部分

  • 演讲者背景介绍
  • Apache Hudi介绍
  • 数据湖演进和用例说明
  • Hudi Clustering介绍
  • Clustering性能和使用
  • 未来工作

在这里插入图片描述

该talk的演讲者为Nishith Agarwal和Satish Kotha,其中Nishith Agarwal是Apache Hudi PMC成员,在Uber任职团队Leader,Satish Kotha是Apache Hudi Committer,也在Uber任职软件工程师。

在这里插入图片描述

什么是Apache Hudi?Hudi是一个数据湖平台,提供了一些核心功能,来构建和管理数据湖,其提供的核心能力是基于DFS摄取和管理超大规模数据集,包括:增量数据库摄取、日志去重、存储管理、事务写、更快的ETL数据管道、数据合规性约束/数据删除、唯一键约束、处理延迟到达数据等等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值