704 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9 输出: 4 解释: 9 出现在 nums 中并且下标为 4
示例 2:输入: nums = [-1,0,3,5,9,12], target = 2 输出: -1 解释: 2 不存在 nums 中因此返回 -1
public class Leetcode703 {
public static void main(String[] args) {
int[] ints = new int[]{-1, 0, 3, 5, 9, 12};
int search = search(ints, 9);
System.out.println(search);
int search1 = search1(ints, 9);
System.out.println(search1);
int search2 = search2(ints, 0, ints.length - 1, 10);
System.out.println(search2);
}
/**
* 闭区间 查找 []
*
* @param nums nums
* @param target target
* @return 下标
*/
public static int search(int[] nums, int target) {
// 左边界
int left = 0;
// 右边界 数组下标从 0 开始 长度为 6 右边界下标是 5
int right = nums.length - 1;
// 小于等于的原因 ---》 [1,2,5] 包括三个元素 左边界下标为 0 右边界 下标为 2 ,
// [2]一个元素 左右边界相同 才能确定唯一元素
while (left <= right) {
// 防止 溢出 求 两个数之间中位数 最简单的是 (A+B)/2 ,
// 但int四个字节 4*8=32 位,去除一个符号位 还有31位,表示范围为 -2的31次方 到 2的31次方-1
// 所以采用 (A-B)/2 求出A B 距离中位数的距离 此时求中位数 只需 A + 中位数 或者 B - 中位数 即可
int mid = right - (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
// 左边界右移
left = mid + 1;
} else {
right = mid - 1;
}
}
return -1;
}
/**
* 左闭右开区间 查找 [ )
*
* @param nums nums
* @param target target
* @return
*/
public static int search1(int[] nums, int target) {
// 左边界
int left = 0;
// 右边界 数组下标从 0 开始 长度为 6 右边界下标是 5
int right = nums.length;
// 原来数组为 [1,2,5]
// right 为 length时 ---》 数组变为 [1,2,5) 左边界下标为 0 右边界 下标为3
// 想要确定 [5) 位置时 可以想成 左边界指在 5 的位置 , 右边界 指在 右括号 的位置 这个区间可以确定唯一的数
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
// 左边界右移
left = mid + 1;
} else {
// [1,2,5) 找过一次后变成 [1,2)
right = mid;
}
}
return -1;
}
/**
* 递归写法
*
* @param nums nums
* @param left left
* @param right right
* @param target target
* @return
*/
public static int search2(int[] nums, int left, int right, int target) {
int mid = left + (right - left) / 2;
// 遍历至最后一个数还没找到 退出
if (left == right && nums[mid] != target) {
return -1;
}
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
return search2(nums, left + 1, right, target);
} else {
return search2(nums, left, right - 1, target);
}
}
}
35 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5 输出: 2 示例 2:
输入: nums = [1,3,5,6], target = 2 输出: 1 示例 3:
输入: nums = [1,3,5,6], target = 7 输出: 4
public class Leetcode35 {
public static void main(String[] args) {
int[] arr = {3,6,8};
int i = searchInsert1(arr, 7);
System.out.println(i);
}
public static int searchInsert1(int[] nums, int target) {
// 找到结束查找时候的左边界
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = right - (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
// [3,6,8] 插入 1 倒数第二次 边界为 [3,6] 进入循环 nums[mid] = 3 , target < 3, 此时 right = 0; left = 1;
// 进入最后一次循环 边界为 [3] nums[mid]=3 ,此时 right = -1; left = 0; 插入位置为 0
// [3,6,8] 插入 4 倒数第二次 边界为 [3,6] 进入循环 nums[mid] = 3 , target > 3, 此时 right = 1; left = 1;
// 进入最后一次循环 边界为 [6] nums[mid] = 6 , target < 6 此时 right = 0; left = 1; 插入位置为1
// 所以返回值为 left 或者 right + 1
return left;
}
}
34 在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8 输出:[3,4] 示例 2:
输入:nums = [5,7,7,8,8,10], target = 6 输出:[-1,-1] 示例 3:
输入:nums = [], target = 0 输出:[-1,-1]
public class Leetcode34 {
public static void main(String[] args) {
int[] arr = {5};
int[] ints = searchRange(arr, 5);
System.out.println(ints[0] + " " + ints[1]);
}
public static int[] searchRange(int[] nums, int target) {
//找到target的下标
int index = search(nums, target);
//为-1 说明不存在
if (index == -1) {
return new int[]{-1, -1};
} else {
//从左边搜
int l = searchLeft(index, target, nums);
//从右边搜
int r = searchRight(index, target, nums);
return new int[]{l, r};
}
}
// 二分 找到target的下标
public static int search(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return -1;
}
//寻找左边界
public static int searchLeft(int index, int target, int[] nums) {
int result = index;
for (int i = index; i >= 0; i--) {
if (nums[i] == target) {
result = i;
}else {
break;
}
}
return result;
}
//寻找右边界
public static int searchRight(int index, int target, int[] nums) {
int result = index;
for (int i = index; i < nums.length; i++) {
if (nums[i] == target) {
result = i;
}else {
break;
}
}
return result;
}
}
27 移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
public class Leetcode27 {
public static void main(String[] args) {
int[] arr = {0, 1, 2, 2, 3, 0, 4, 2};
int i = removeElement(arr, 2);
System.out.println(i);
}
//快慢指针
public static int removeElement(int[] nums, int val) {
int slow = 0;
for (int fast = 0; fast < nums.length; fast++) {
if (nums[fast] != val) {
nums[slow] = nums[fast];
slow++;
}
}
return slow;
}
}