线性代数(第二章:矩阵)


一、矩阵的基础知识

1. 矩阵的概念与运算

1)矩阵的定义

2)特殊矩阵

  • 同型矩阵:如果两个矩阵的行数和列数都相同,那么这两个矩阵是同型矩阵。

  • 矩阵相等:所有元素对应相等,A = B 。

3)矩阵的运算

  • A + B = B + A
  • (A + B)·C = AC + BC
  • A·(B + C) = AB + AC
  • A·(BC) = (AB)C
  • k·(A + B) = kA + kB
  • (kA)·(lB) = klAB
  • AE = A , EA = A
  • OA = O , AO = O
  • 矩阵乘法没有交换律,一般情况 AB ≠ BA
  • 矩阵乘法没有消去律
  • AB = O 不能推出 A = O 或 B = O

2. 矩阵的常考类型

1)转置矩阵 AT

将 A 的行与列互换后所得的矩阵。

公式:(AB)T = BTAT ;(A + B)T = AT + BT

2)伴随矩阵 A*

① 伴随矩阵的定义:行列式 |A| 的每个元素 aij 的代数余子式 Aij 所构成的如下的矩阵:

② 伴随矩阵的公式:

  • (AB)* = B*A*
  • (A + B)* ≠ A* + B*
  • (A*)-1 = (A-1)*
  • (AT)* = (A*)T
  • A A* = A*A = |A|E

③ 伴随矩阵行列式:|A*| = |A|n-2

④ 二阶矩阵的伴随矩阵:主对调,副反号,得伴随

⑤ 伴随矩阵的秩:设 An×n(A 是 n 阶矩阵,n ≥ 2),则:

  • 当 r(A) = n 时,有 r(A*) = n

  • 当 r(A) = n-1 时,有 r(A*) = 1

  • 当 r(A) < n-1 时,有 r(A*) = 0

若 |A| = 0 时,A A* = A*A = 0,则立即有:
I、r(A) + r(A*) ≤ n(A 是不可逆 n 阶矩阵)
II、A 的列向量均为 A*x = 0 方程组的解且 A* 的列向量均为 Ax = 0 方程组的解

⑥ 伴随矩阵的特征值和特征向量:

  • A 是 n 阶方阵,若 r(A) = n 且 A 的特征值为 λ1 , λ2 , … , λn ,则 A* 的特征值为 |A|/λ1 , |A|/λ2 ,…, |A|/λn

  • A 是 n 阶方阵,若 r(A) = n-1 ,则 A* 的特征值为 tr(A*) , 0 , 0 , … , 0(一共 n-1 个 0)
    当 tr(A*) = 0 时, A* 没有 n 个线性无关的特征向量,不可对角化
    当 tr(A*) ≠ 0 时, A* 有 n 个线性无关的特征向量,可对角化

  • A 是 n 阶方阵,若 r(A) < n-1 ,则 A* = O , A* 的特征值为 n 个 0

⑦ 伴随矩阵相似及相似对角化:

  • 若 A ~ B ,则 A* ~ B*
  • 若 A 可以相似对角化,则 A* 也可以相似对角化

⑧ 其他结论:

  • 若 A 的各行之和均为 k(k ≠ 0),则 A* 的各行之和均为 |A|/k

  • 设 A 是非零矩阵,若 A* = AT ,则 A 是正交矩阵且 |A| = 1
    设 A 是非零矩阵,若 A* = -AT ,则 A 是正交矩阵且 |A| = -1

3)可逆矩阵 A-1

① 可逆矩阵的定义:设 A 是 n 阶矩阵,若存在 n 阶矩阵 B ,使得 AB = BA = E ,则称 B 是 A 的逆矩阵,记为 B = A-1

② 可逆的充要条件:设 A 是 n 阶矩阵,则:
A 可逆 ⇔ |A| ≠ 0 ⇔ r(A) = n ⇔ A 的列(行)向量组线性无关 ⇔ A 与单位矩阵等价 ⇔ 0 不是 A 的特征值 ⇔ Ax = 0 仅有零解 ⇔ Ax = b 有唯一解。

r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在;
r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在。

③ 求逆矩阵的方法:

  • 定义法:A 是方阵,若 AB = E ,则 A , B 互为逆矩阵

  • 初等行变换:
    求 A-1 ,则 (A|E) —初等行变换→ (E|A-1)
    求 A-1B ,则 (A|B) —初等行变换→ (E|A-1B)

  • 用伴随公式:A-1 = A* / |A|

  • 用分块矩阵公式

④ 可逆的公式:

  • (A-1)-1 = A
  • (kA)-1 = (1/k)A-1(k ≠ 0)
  • (AB)-1 = B-1A-1
  • (A + B)-1 ≠ A-1 + B-1
  • (A-1)T = (AT)-1
  • |A-1| = 1/|A|
  • (An)-1 = (A-1)n

4)对称矩阵与反对称矩阵

对称矩阵:AT = A ;反对称矩阵:AT = -A 。

5)正交矩阵(方阵)

① 定义:满足 AAT = ATA = E 的矩阵 A 称为正交矩阵

② 性质:

  • 列向量均为单位向量,列向量彼此之间正交

  • 行列式:|A| = 1 或 -1

  • 若 A 为正交矩阵,则 A-1 、AT 、A* 均为正交矩阵,且 A-1 = AT

  • 若 A , B 均为正交矩阵,则 AB 也为正交矩阵

  • A 是正交矩阵 ⇔ A 的各都是单位向量且两两正交
    A 是正交矩阵 ⇔ A 的各都是单位向量且两两正交

  • 正交变换不改变向量之间的内积、向量的模长
    设 A 是正交矩阵,则 (Ax,Ay) = (x,y) 且 ||Ax|| = ||x||

  • 若 A 是正交矩阵且有实数特征值,则这个特征值只能是 -1 或 1
    注:正交矩阵不一定都有实数特征值

③ 拓展:

  • 设 A 是正交矩阵且 |A| < 0 ,则 |A+E| = 0
    设 A 是偶数阶正交矩阵且 |A| > 0 ,则 |A+E| = 0 且 |A-E| = 0
    设 A 是奇数阶正交矩阵且 |A| > 0 ,则 |A-E| = 0
    设 A 是奇数阶正交矩阵则 |A+E| 及 |A-E| 必有一个是零

  • 设 A 是正交矩阵,若 A 有特征值 -1 和 1 ,则 -1 和 1 对应的特征向量正交

  • A 是正交矩阵且 |A| = 1 ⇒ Aij = aij
    A 是正交矩阵且 |A| = 1 ⇐ Aij = aij 且 A 是非零矩阵

  • A 是正交矩阵且 |A| = -1 ⇒ Aij = -aij
    A 是正交矩阵且 |A| = -1 ⇐ Aij = -aij 且 A 是非零矩阵

6)秩 1 矩阵

设 A 是 n 阶矩阵

  • r(A) = 1 ⇔ A 可以表示为 αβT ,其中 α , β 是 n 维非零向量
    当 A 可表示为 αβT ,有 tr(A) = (α,β) = βTα = αTβ

  • r(A) = 1 ⇒ An = [tr(A)]n-1A

  • r(A) = 1 ⇒ A 的所有特征值是 tr(A) , 0 , 0 , … , 0(一共 n-1 个 0)

  • r(A) = 1 ⇒ 当 tr(A) = 0 ,A 不可以对角化;当 tr(A) ≠ 0 ,A 可以对角化

还有 分块矩阵、初等矩阵、行阶梯矩阵、行最简矩阵 等。

3. 矩阵的初等变换

1)初等变换

  • 【互换】互换矩阵的某两行或某两列
  • 【倍乘】某一行或某一列乘 k 倍(k ≠ 0)
  • 【倍加】把某行(列)的 k 倍加到另外一行(列)

2)初等矩阵

初等矩阵是指单位矩阵经过一次初等变换后所得到的矩阵

  • Ei,j 表示单位矩阵 E 交换第 i 行与第 j 行(或交换第 i 列与第 j 列)
  • Ei(k)(k ≠ 0)表示单位矩阵 E 的第 i 行(或第 i 列)乘以非零常数 k
  • Eij(k) 表示单位矩阵 E 的第 j 行的 k 倍加到第 i 行(或第 i 列的 k 倍加到第 j 列)
矩阵意义行列式
互换Ei,j交换第 i 行与第 j 行(或交换第 i 列与第 j 列)(Ei,j)-1 = Ei,j|Ei,j| = -1
倍乘Ei(k)第 i 行(或第 i 列)乘以非零常数 k(Ei(k))-1 = Ei(1/k)|Ei(k)| = k
倍加Eij(k)第 j 行的 k 倍加到第 i 行(或第 i 列的 k 倍加到第 j 列)(Eij(k))-1 = Eij(-k)|Eij(k)| = 1

初等矩阵的作用:左行右列

  • 矩阵 A 左乘初等矩阵,相当于对 A 作初等行变换;
  • 矩阵 A 右乘初等矩阵,相当于对 A 作初等列变换。

【注】:
乘法规则:左乘初等矩阵,作行变换;右乘初等矩阵,作列变换(左行右列)
初等矩阵的逆矩阵仍然是初等矩阵(并且是同类型的)

【重要】:

  • 矩阵 A 经过初等变换得到 B ⇔ A 与 B 的行向量组等价 ⇔ r(A) = r(B) = r(AB) ⇔ Ax = 0 与 Bx = 0 同解 ⇔ A 与 B 的列向量具有相同的线性关系。

  • 矩阵 A 经过初等变换得到 B ⇔ A 与 B 的列向量组等价 ⇔ r(A) = r(B) = r(A,B) ⇔ ATx = 0 与 BTx = 0 同解 ⇔ A 与 B 的行向量具有相同的线性关系。

3)行阶梯矩阵

  • 如果矩阵中有 0 行(即这一行元素全为 0),则零行在矩阵的底部。
  • 每个非 0 行的主元(即该行最左边的第一个非零元),它们的列指标随着行指标的递增而严格增大。

4)行最简矩阵

  • 是行阶梯矩阵
  • 非零行的主元都是 1
  • 主元所在的列的其他元素都是 0

4. 矩阵的秩

1)定义

如果矩阵 A 中存在 r 阶子式不为 0 ,而 A 的所有的 r+1 阶子式全为 0 ,则 r 叫做 A 的秩,记作 r(A) 。

2)求秩的方法

  • 利用初等行变换,将 A 化为阶梯型,则阶梯型中非零的行数就是矩阵的秩
  • 若 A 中至少有 k 阶子式不为 0 ,所有 k + 1 阶子式为 0 ,则 A 的秩为 k
  • 用行列式
    r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在
    r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在

① 若 A ≠ O ,则 r(A) ≥ 1
② 两行不等比例,则 r(A) ≥ 2

5. 矩阵等价

1)矩阵等价的定义

设 A , B 是两个同型矩阵,若 A 经过有限次初等变换化为 B ,称矩阵 A 与矩阵 B 等价。

2)矩阵等价的充要条件

  • 同型且秩相等(判定的主要方式)
  • A 经过有限次初等变换化为 B
  • 存在可逆矩阵 P , Q ,使得 PAQ = B

可逆矩阵可以表示为一系列初等矩阵的乘积!

二、矩阵的 n 次幂

1. 秩 1 矩阵的 n 次幂

『结论』:若 r(A) = 1 ,则 An = [tr(A)]n-1A 。

『证明』:由于 r(A) = 1 ,则 A = αβT ,An = α(βTα)(βT……α)(βTα)βT = [tr(A)]n-1·αβT = [tr(A)]n-1A 。

『例题』:

2. “冰淇淋” 矩阵

“冰淇淋”矩阵即主对角线以及主对角线以上(或以下)的元素全为 0 的矩阵。

『结论』:

  • 有 2 斜线,则最多有 A2 不为 0 ,A3 必为 0 ;

  • 有 3 斜线,则最多有 A3 不为 0 ,A4 必为 0 。

『例题』:

3. 上三角(拆成两个矩阵之和)

『结论』:An = (B + E)n = Cn0·E + Cn1·B + Cn2·B2 + … + Cnn·Bn

『例题』:

4. 分块矩阵

『结论』:对角矩阵 n 次幂公式 (OABO)n = (OAⁿBⁿO)

【注】:
① 副对角线 n 次幂没有公式,上述公式只针对主对角线;
② 上述公式中 A 、B 均为方阵,不可以是向量。

『例题』:

5. 用相似

『结论』:

  • 若 A ~ B ,则有 P-1AP = B ,则 An = PBnP-1

  • 若 A ~ Λ ,则有 P-1AP = Λ ,则 An = PΛnP-1

『证明』:若 A ~ B ,则有 P-1AP = B ,则 A = PBP-1 ,An = PB(P-1P)B(P-1…P)B(P-1P)BP-1 = PBnP-1

『例题』:

6. 找规律

三、矩阵求逆

1. 具体型矩阵求逆

  • 定义法:A 是方阵,若 AB = E ,则 A , B 互为逆矩阵

  • 初等变换:

  • 用伴随公式:A-1 = A* / |A|(常用于二阶矩阵)

  • 用分块矩阵公式

2. 抽象型矩阵求逆

1)用 A 的多项式

① 题目给出 f(A) = O 时求逆

例题:

  • 若 A 是 n 阶矩阵,满足 A2 + 3A - 2E = O ,求 A-1 以及 (A+E)-1
    A · [(A+3E)/2] = E , 得出 A-1 = (A+3E)/2
    (A+E) · [(A+2E)/4] = E , 得出 (A+E)-1 = (A+2E)/4

  • 设 n 阶方阵 A 满足 A3 - 2A2 + 3A - 4E = O ,求 (A-E)-1
    (A-E) · [(A2-A+2E)/2] = E , 得出 (A-E)-1 = (A2-A+2E)/2

② 题目未给出 f(A) 的式子,需要自行构造

例题:

  • 设 A = E + αβT ,其中 α , β 为 n 维向量,且 αTβ = 2 ,求 A-1
    A2 = E + 4αβT = 4A - 3E ,得到 A2 - 4A = - 3E
    A · [(A-4E)/(-3)] = E , 得出 A-1 = (A-4E)/(-3)

  • 设 A = E - 2xxT ,x = (X1 , X2 , … , Xn)T ,若 xTx = 1 ,求 A-1
    A2 = (E - 2xxT) · (E - 2xxT) = E , 得出 A-1 = A

2)用 E 的恒等变形

『方法』:

  • 灵活改写 E
  • 左乘 E ,右乘 E ,两边提

例题:

3. 判断是否可逆

可逆的充要条件:设 A 是 n 阶矩阵,则:

A 可逆 ⇔ |A| ≠ 0 ⇔ r(A) = n ⇔ A 的列(行)向量组线性无关 ⇔ A 与单位矩阵等价 ⇔ 0 不是 A 的特征值 ⇔ Ax = 0 仅有零解 ⇔ Ax = b 有唯一解。

  • r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在;

  • r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在。

例题:

证明题:

四、秩的不等式

1. 必背公式

  • 矩阵的秩 = 行向量组的秩 = 列向量组的秩

  • r(AB) ≤ min{r(A),r(B)}『越乘越小』

  • r(A,B) ≥ r(A) 且 r(A,B) ≥ r(B)『越拼越大』

  • r(A±B) ≤ r(A) + r(B)『分开加最大』

  • Am×sBs×n = O ⇒ r(A) + r(B) ≤ n

  • 当 r(A) = n 时,有 r(A*) = n ; 当 r(A) = n-1 时,有 r(A*) = 1 ; 当 r(A) < n-1 时,有 r(A*) = 0

  • r(A) = r(AT) = r(ATA) = r(AAT) = r(kA)(k ≠ 0)『四秩相等』

  • r(PAQ) = r(AQ) = r(PA) = r(A) , 其中 P , Q 为可逆矩阵『左乘/右乘可逆阵,不变秩』

  • 左乘列满秩,不变秩;右乘行满秩,不变秩
    当 B 列满秩时,r(BA) = r(A) ;当 B 行满秩时,r(AB) = r(A)

  • 列满秩有左消去律;行满秩有右消去律
    当 A 列满秩时,AB = AC ⇒ B = C ;当 A 行满秩时,BA = CA ⇒ B = C

  • 【补充】:

① r(AB) ≤ min{r(A),r(B)} ≤ r(A,B) ≤ r(A)+r(B)
② r(A±B) ≤ r(A,B) ≤ r(A)+r(B)
③ r(AB) ≥ r(A) + r(B) - n ,进一步有 AB = O ⇒ r(A) + r(B) ≤ n

2. 公式证明

例题:设 Am×n , Bn×n , Cn×m ,且 AB = A ,BC = O,r(A) = n ,求 |CA - B| 。

解析:

  • 由题意可知 A 列满秩,有左消去律,即 AB = A ⇒ B = E 且 r(B) = n
  • B 也列满秩,有左消去律,即 BC = O ⇒ C = O
  • |CA - B| = |-E| = (-1)n · |E| = (-1)n

3. 例题

1)填空题

2)选择题

3)证明题

(a)设 A 为 n 阶矩阵,满足 A2 = A ,证明:r(A) + r(A-E) = n

  • A2 = A ⇒ A·(A-E) = O ⇒ r(A) + r(A-E) ≤ n『AB = O ⇒ r(A) + r(B) ≤ n』
  • r(A) + r(A-E) ≥ r[A-(A-E)] = r(E) = n『分开加最大』
  • 即 r(A) + r(A-E) = n

(b)设 A 为 n 阶矩阵,满足 A2 = E ,证明:r(A+E) + r(E-A) = n

  • A2 = E ⇒ (A+E)·(E-A) = O ⇒ r(A+E) + r(E-A) ≤ n
  • r(A+E) + r(E-A) ≥ r[(A+E)+(E-A)] = r(E) = n
  • 即 r(A+E) + r(E-A) = n

4)判断题

(a)r(A,AB) = r(A)

  • r(A,AB) ≥ r(A)『越拼越大』
  • r(A,AB) = r[A(E,B)] ≤ r(A)『越乘越小』
  • 即 r(A,AB) = r(A)

(b)r(A,BA) = r(A) ×

  • r(A,BA) ≠ r[(E,B)A](假设 A , B , E 均为 n×n 的矩阵,则 (E,B)n×2n 与 An×n 不能相乘)

五、初等矩阵

1. 知识点

  • 初等行变换不改变矩阵的秩

  • 初等行变换不改变列向量组的线性相关性

  • 任意一个可逆矩阵都可以表示为若干个初等矩阵的乘积

  • 任意一个可逆矩阵都可以通过初等变换得到单位矩阵 E
    任意一个可逆矩阵都可以通过初等变换得到单位矩阵 E

  • 单位矩阵 E 可以通过初等变换得到任意一个可逆矩阵
    单位矩阵 E 可以通过初等变换得到任意一个可逆矩阵

  • 设 A,B 为同阶可逆矩阵,则 A 可以通过初等变换得到 B
    设 A,B 为同阶可逆矩阵,则 A 可以通过初等变换得到 B

  • 设 A , B 是两个同型矩阵:
    若矩阵 A 通过有限次初等变换得到矩阵 B ,则称 A 与 B 等价
    若矩阵 A 通过有限次初等变换得到矩阵 B ,则称 A 与 B 行等价
    若矩阵 A 通过有限次初等变换得到矩阵 B ,则称 A 与 B 列等价

  • 矩阵等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 等价
    ⇔ 同型秩相等,r(A) = r(B)
    ⇔ A 经过有限次初等变换化为 B
    ⇔ 存在可逆矩阵 P , Q ,使得 PAQ = B
    ⇒ 若 Ax = 0 有非零解,则 Bx = 0 也有非零解
    ⇏ 方程 Ax = 0 与 Bx = 0 同解

  • 矩阵等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 行等价
    ⇔ r(A) = r(B) = r(AB)
    ⇔ A 与 B 的行向量组等价
    ⇔ 存在可逆矩阵 P ,使得 PA = B
    ⇔ 方程 Ax = 0 与 Bx = 0 同解

  • 矩阵等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 列等价
    ⇔ r(A) = r(B) = r(A B)
    ⇔ A 与 B 的列向量组等价
    ⇔ 存在可逆矩阵 Q ,使得 AQ = B
    ⇒ 若 Ax = 0 有非零解,则 Bx = 0 也有非零解
    ⇏ 方程 Ax = 0 与 Bx = 0 同解

  • 【补充】:

矩阵行列式转置
互换Ei,j(Ei,j)-1 = Ei,j|Ei,j| = -1(Ei,j)T = Ei,j
倍乘Ei(k)(Ei(k))-1 = Ei(1/k)|Ei(k)| = kEi(k)T = Ei(k)
倍加Eij(k)(Eij(k))-1 = Eij(-k)|Eij(k)| = 1(Eij(k))T = Eji(k)

2. 例题

六、分块矩阵

1. 分块矩阵的行列式

2. 分块矩阵的转置

3. 分块矩阵的逆

推导过程:

4. 分块矩阵的伴随

5. 分块矩阵的 n 次幂

6. 分块矩阵的秩

7. 例题

七、广义初等变换

1. 矩阵

2. 运算(左行右列)

3. 例题

『方法』:

『例题』:

八、矩阵方程

1. 知识点

2. 例题

1)矩阵可逆

2)矩阵不可逆

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kusunoki_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值