一、矩阵的基础知识
1. 矩阵的概念与运算
1)矩阵的定义
2)特殊矩阵
-
同型矩阵:如果两个矩阵的行数和列数都相同,那么这两个矩阵是同型矩阵。
-
矩阵相等:所有元素对应相等,A = B 。
3)矩阵的运算
- A + B = B + A
- (A + B)·C = AC + BC
- A·(B + C) = AB + AC
- A·(BC) = (AB)C
- k·(A + B) = kA + kB
- (kA)·(lB) = klAB
- AE = A , EA = A
- OA = O , AO = O
- 矩阵乘法没有交换律,一般情况 AB ≠ BA
- 矩阵乘法没有消去律
- AB = O 不能推出 A = O 或 B = O
2. 矩阵的常考类型
1)转置矩阵 AT
将 A 的行与列互换后所得的矩阵。
公式:(AB)T = BTAT ;(A + B)T = AT + BT
2)伴随矩阵 A*
① 伴随矩阵的定义:行列式 |A| 的每个元素 aij 的代数余子式 Aij 所构成的如下的矩阵:
② 伴随矩阵的公式:
- (AB)* = B*A*
- (A + B)* ≠ A* + B*
- (A*)-1 = (A-1)*
- (AT)* = (A*)T
- A A* = A*A = |A|E
③ 伴随矩阵行列式:|A*| = |A|n-2
④ 二阶矩阵的伴随矩阵:主对调,副反号,得伴随
⑤ 伴随矩阵的秩:设 An×n(A 是 n 阶矩阵,n ≥ 2),则:
-
当 r(A) = n 时,有 r(A*) = n
-
当 r(A) = n-1 时,有 r(A*) = 1
-
当 r(A) < n-1 时,有 r(A*) = 0
若 |A| = 0 时,A A* = A*A = 0,则立即有:
I、r(A) + r(A*) ≤ n(A 是不可逆 n 阶矩阵)
II、A 的列向量均为 A*x = 0 方程组的解且 A* 的列向量均为 Ax = 0 方程组的解
⑥ 伴随矩阵的特征值和特征向量:
-
A 是 n 阶方阵,若 r(A) = n 且 A 的特征值为 λ1 , λ2 , … , λn ,则 A* 的特征值为 |A|/λ1 , |A|/λ2 ,…, |A|/λn
-
A 是 n 阶方阵,若 r(A) = n-1 ,则 A* 的特征值为 tr(A*) , 0 , 0 , … , 0(一共 n-1 个 0)
当 tr(A*) = 0 时, A* 没有 n 个线性无关的特征向量,不可对角化
当 tr(A*) ≠ 0 时, A* 有 n 个线性无关的特征向量,可对角化 -
A 是 n 阶方阵,若 r(A) < n-1 ,则 A* = O , A* 的特征值为 n 个 0
⑦ 伴随矩阵相似及相似对角化:
- 若 A ~ B ,则 A* ~ B*
- 若 A 可以相似对角化,则 A* 也可以相似对角化
⑧ 其他结论:
-
若 A 的各行之和均为 k(k ≠ 0),则 A* 的各行之和均为 |A|/k
-
设 A 是非零矩阵,若 A* = AT ,则 A 是正交矩阵且 |A| = 1
设 A 是非零矩阵,若 A* = -AT ,则 A 是正交矩阵且 |A| = -1
3)可逆矩阵 A-1
① 可逆矩阵的定义:设 A 是 n 阶矩阵,若存在 n 阶矩阵 B ,使得 AB = BA = E ,则称 B 是 A 的逆矩阵,记为 B = A-1 。
② 可逆的充要条件:设 A 是 n 阶矩阵,则:
A 可逆 ⇔ |A| ≠ 0 ⇔ r(A) = n ⇔ A 的列(行)向量组线性无关 ⇔ A 与单位矩阵等价 ⇔ 0 不是 A 的特征值 ⇔ Ax = 0 仅有零解 ⇔ Ax = b 有唯一解。
r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在;
r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在。
③ 求逆矩阵的方法:
-
定义法:A 是方阵,若 AB = E ,则 A , B 互为逆矩阵
-
初等行变换:
求 A-1 ,则 (A|E) —初等行变换→ (E|A-1)
求 A-1B ,则 (A|B) —初等行变换→ (E|A-1B) -
用伴随公式:A-1 = A* / |A|
-
用分块矩阵公式
④ 可逆的公式:
- (A-1)-1 = A
- (kA)-1 = (1/k)A-1(k ≠ 0)
- (AB)-1 = B-1A-1
- (A + B)-1 ≠ A-1 + B-1
- (A-1)T = (AT)-1
- |A-1| = 1/|A|
- (An)-1 = (A-1)n
4)对称矩阵与反对称矩阵
对称矩阵:AT = A ;反对称矩阵:AT = -A 。
5)正交矩阵(方阵)
① 定义:满足 AAT = ATA = E 的矩阵 A 称为正交矩阵
② 性质:
-
列向量均为单位向量,列向量彼此之间正交
-
行列式:|A| = 1 或 -1
-
若 A 为正交矩阵,则 A-1 、AT 、A* 均为正交矩阵,且 A-1 = AT
-
若 A , B 均为正交矩阵,则 AB 也为正交矩阵
-
A 是正交矩阵 ⇔ A 的各列都是单位向量且两两正交
A 是正交矩阵 ⇔ A 的各行都是单位向量且两两正交 -
正交变换不改变向量之间的内积、向量的模长
设 A 是正交矩阵,则 (Ax,Ay) = (x,y) 且 ||Ax|| = ||x|| -
若 A 是正交矩阵且有实数特征值,则这个特征值只能是 -1 或 1
注:正交矩阵不一定都有实数特征值
③ 拓展:
-
设 A 是正交矩阵且 |A| < 0 ,则 |A+E| = 0
设 A 是偶数阶正交矩阵且 |A| > 0 ,则 |A+E| = 0 且 |A-E| = 0
设 A 是奇数阶正交矩阵且 |A| > 0 ,则 |A-E| = 0
设 A 是奇数阶正交矩阵则 |A+E| 及 |A-E| 必有一个是零 -
设 A 是正交矩阵,若 A 有特征值 -1 和 1 ,则 -1 和 1 对应的特征向量正交
-
A 是正交矩阵且 |A| = 1 ⇒ Aij = aij
A 是正交矩阵且 |A| = 1 ⇐ Aij = aij 且 A 是非零矩阵 -
A 是正交矩阵且 |A| = -1 ⇒ Aij = -aij
A 是正交矩阵且 |A| = -1 ⇐ Aij = -aij 且 A 是非零矩阵
6)秩 1 矩阵
设 A 是 n 阶矩阵
-
r(A) = 1 ⇔ A 可以表示为 αβT ,其中 α , β 是 n 维非零向量
当 A 可表示为 αβT ,有 tr(A) = (α,β) = βTα = αTβ -
r(A) = 1 ⇒ An = [tr(A)]n-1A
-
r(A) = 1 ⇒ A 的所有特征值是 tr(A) , 0 , 0 , … , 0(一共 n-1 个 0)
-
r(A) = 1 ⇒ 当 tr(A) = 0 ,A 不可以对角化;当 tr(A) ≠ 0 ,A 可以对角化
还有 分块矩阵、初等矩阵、行阶梯矩阵、行最简矩阵 等。
3. 矩阵的初等变换
1)初等变换
- 【互换】互换矩阵的某两行或某两列
- 【倍乘】某一行或某一列乘 k 倍(k ≠ 0)
- 【倍加】把某行(列)的 k 倍加到另外一行(列)
2)初等矩阵
初等矩阵是指单位矩阵经过一次初等变换后所得到的矩阵
- Ei,j 表示单位矩阵 E 交换第 i 行与第 j 行(或交换第 i 列与第 j 列)
- Ei(k)(k ≠ 0)表示单位矩阵 E 的第 i 行(或第 i 列)乘以非零常数 k
- Eij(k) 表示单位矩阵 E 的第 j 行的 k 倍加到第 i 行(或第 i 列的 k 倍加到第 j 列)
矩阵 | 意义 | 逆 | 行列式 | |
---|---|---|---|---|
互换 | Ei,j | 交换第 i 行与第 j 行(或交换第 i 列与第 j 列) | (Ei,j)-1 = Ei,j | |Ei,j| = -1 |
倍乘 | Ei(k) | 第 i 行(或第 i 列)乘以非零常数 k | (Ei(k))-1 = Ei(1/k) | |Ei(k)| = k |
倍加 | Eij(k) | 第 j 行的 k 倍加到第 i 行(或第 i 列的 k 倍加到第 j 列) | (Eij(k))-1 = Eij(-k) | |Eij(k)| = 1 |
初等矩阵的作用:左行右列
- 矩阵 A 左乘初等矩阵,相当于对 A 作初等行变换;
- 矩阵 A 右乘初等矩阵,相当于对 A 作初等列变换。
【注】:
乘法规则:左乘初等矩阵,作行变换;右乘初等矩阵,作列变换(左行右列)
初等矩阵的逆矩阵仍然是初等矩阵(并且是同类型的)
【重要】:
-
矩阵 A 经过初等行变换得到 B ⇔ A 与 B 的行向量组等价 ⇔ r(A) = r(B) = r(AB) ⇔ Ax = 0 与 Bx = 0 同解 ⇔ A 与 B 的列向量具有相同的线性关系。
-
矩阵 A 经过初等列变换得到 B ⇔ A 与 B 的列向量组等价 ⇔ r(A) = r(B) = r(A,B) ⇔ ATx = 0 与 BTx = 0 同解 ⇔ A 与 B 的行向量具有相同的线性关系。
3)行阶梯矩阵
- 如果矩阵中有 0 行(即这一行元素全为 0),则零行在矩阵的底部。
- 每个非 0 行的主元(即该行最左边的第一个非零元),它们的列指标随着行指标的递增而严格增大。
4)行最简矩阵
- 是行阶梯矩阵
- 非零行的主元都是 1
- 主元所在的列的其他元素都是 0
4. 矩阵的秩
1)定义
如果矩阵 A 中存在 r 阶子式不为 0 ,而 A 的所有的 r+1 阶子式全为 0 ,则 r 叫做 A 的秩,记作 r(A) 。
2)求秩的方法
- 利用初等行变换,将 A 化为阶梯型,则阶梯型中非零的行数就是矩阵的秩
- 若 A 中至少有 k 阶子式不为 0 ,所有 k + 1 阶子式为 0 ,则 A 的秩为 k
- 用行列式
r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在
r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在
① 若 A ≠ O ,则 r(A) ≥ 1
② 两行不等比例,则 r(A) ≥ 2
5. 矩阵等价
1)矩阵等价的定义
设 A , B 是两个同型矩阵,若 A 经过有限次初等变换化为 B ,称矩阵 A 与矩阵 B 等价。
2)矩阵等价的充要条件
- 同型且秩相等(判定的主要方式)
- A 经过有限次初等变换化为 B
- 存在可逆矩阵 P , Q ,使得 PAQ = B
可逆矩阵可以表示为一系列初等矩阵的乘积!
二、矩阵的 n 次幂
1. 秩 1 矩阵的 n 次幂
『结论』:若 r(A) = 1 ,则 An = [tr(A)]n-1A 。
『证明』:由于 r(A) = 1 ,则 A = αβT ,An = α(βTα)(βT……α)(βTα)βT = [tr(A)]n-1·αβT = [tr(A)]n-1A 。
『例题』:
2. “冰淇淋” 矩阵
“冰淇淋”矩阵即主对角线以及主对角线以上(或以下)的元素全为 0 的矩阵。
『结论』:
-
有 2 斜线,则最多有 A2 不为 0 ,A3 必为 0 ;
-
有 3 斜线,则最多有 A3 不为 0 ,A4 必为 0 。
『例题』:
3. 上三角(拆成两个矩阵之和)
『结论』:An = (B + E)n = Cn0·E + Cn1·B + Cn2·B2 + … + Cnn·Bn
『例题』:
4. 分块矩阵
『结论』:对角矩阵 n 次幂公式 (OABO)n = (OAⁿBⁿO)
【注】:
① 副对角线 n 次幂没有公式,上述公式只针对主对角线;
② 上述公式中 A 、B 均为方阵,不可以是向量。
『例题』:
5. 用相似
『结论』:
-
若 A ~ B ,则有 P-1AP = B ,则 An = PBnP-1 ;
-
若 A ~ Λ ,则有 P-1AP = Λ ,则 An = PΛnP-1 。
『证明』:若 A ~ B ,则有 P-1AP = B ,则 A = PBP-1 ,An = PB(P-1P)B(P-1…P)B(P-1P)BP-1 = PBnP-1 。
『例题』:
6. 找规律
三、矩阵求逆
1. 具体型矩阵求逆
-
定义法:A 是方阵,若 AB = E ,则 A , B 互为逆矩阵
-
初等变换:
-
用伴随公式:A-1 = A* / |A|(常用于二阶矩阵)
-
用分块矩阵公式
2. 抽象型矩阵求逆
1)用 A 的多项式
① 题目给出 f(A) = O 时求逆
例题:
-
若 A 是 n 阶矩阵,满足 A2 + 3A - 2E = O ,求 A-1 以及 (A+E)-1
A · [(A+3E)/2] = E , 得出 A-1 = (A+3E)/2
(A+E) · [(A+2E)/4] = E , 得出 (A+E)-1 = (A+2E)/4 -
设 n 阶方阵 A 满足 A3 - 2A2 + 3A - 4E = O ,求 (A-E)-1
(A-E) · [(A2-A+2E)/2] = E , 得出 (A-E)-1 = (A2-A+2E)/2
② 题目未给出 f(A) 的式子,需要自行构造
例题:
-
设 A = E + αβT ,其中 α , β 为 n 维向量,且 αTβ = 2 ,求 A-1
A2 = E + 4αβT = 4A - 3E ,得到 A2 - 4A = - 3E
A · [(A-4E)/(-3)] = E , 得出 A-1 = (A-4E)/(-3) -
设 A = E - 2xxT ,x = (X1 , X2 , … , Xn)T ,若 xTx = 1 ,求 A-1
A2 = (E - 2xxT) · (E - 2xxT) = E , 得出 A-1 = A
2)用 E 的恒等变形
『方法』:
- 灵活改写 E
- 左乘 E ,右乘 E ,两边提
例题:
3. 判断是否可逆
可逆的充要条件:设 A 是 n 阶矩阵,则:
A 可逆 ⇔ |A| ≠ 0 ⇔ r(A) = n ⇔ A 的列(行)向量组线性无关 ⇔ A 与单位矩阵等价 ⇔ 0 不是 A 的特征值 ⇔ Ax = 0 仅有零解 ⇔ Ax = b 有唯一解。
-
r(A) = n ⇔ |A| ≠ 0 ⇔ A-1 存在;
-
r(A) < n ⇔ |A| = 0 ⇔ A-1 不存在。
例题:
证明题:
四、秩的不等式
1. 必背公式
-
矩阵的秩 = 行向量组的秩 = 列向量组的秩
-
r(AB) ≤ min{r(A),r(B)}『越乘越小』
-
r(A,B) ≥ r(A) 且 r(A,B) ≥ r(B)『越拼越大』
-
r(A±B) ≤ r(A) + r(B)『分开加最大』
-
Am×sBs×n = O ⇒ r(A) + r(B) ≤ n
-
当 r(A) = n 时,有 r(A*) = n ; 当 r(A) = n-1 时,有 r(A*) = 1 ; 当 r(A) < n-1 时,有 r(A*) = 0
-
r(A) = r(AT) = r(ATA) = r(AAT) = r(kA)(k ≠ 0)『四秩相等』
-
r(PAQ) = r(AQ) = r(PA) = r(A) , 其中 P , Q 为可逆矩阵『左乘/右乘可逆阵,不变秩』
-
左乘列满秩,不变秩;右乘行满秩,不变秩
当 B 列满秩时,r(BA) = r(A) ;当 B 行满秩时,r(AB) = r(A) -
列满秩有左消去律;行满秩有右消去律
当 A 列满秩时,AB = AC ⇒ B = C ;当 A 行满秩时,BA = CA ⇒ B = C -
【补充】:
① r(AB) ≤ min{r(A),r(B)} ≤ r(A,B) ≤ r(A)+r(B)
② r(A±B) ≤ r(A,B) ≤ r(A)+r(B)
③ r(AB) ≥ r(A) + r(B) - n ,进一步有 AB = O ⇒ r(A) + r(B) ≤ n
2. 公式证明
例题:设 Am×n , Bn×n , Cn×m ,且 AB = A ,BC = O,r(A) = n ,求 |CA - B| 。
解析:
- 由题意可知 A 列满秩,有左消去律,即 AB = A ⇒ B = E 且 r(B) = n
- B 也列满秩,有左消去律,即 BC = O ⇒ C = O
- |CA - B| = |-E| = (-1)n · |E| = (-1)n
3. 例题
1)填空题
2)选择题
3)证明题
(a)设 A 为 n 阶矩阵,满足 A2 = A ,证明:r(A) + r(A-E) = n
- A2 = A ⇒ A·(A-E) = O ⇒ r(A) + r(A-E) ≤ n『AB = O ⇒ r(A) + r(B) ≤ n』
- r(A) + r(A-E) ≥ r[A-(A-E)] = r(E) = n『分开加最大』
- 即 r(A) + r(A-E) = n
(b)设 A 为 n 阶矩阵,满足 A2 = E ,证明:r(A+E) + r(E-A) = n
- A2 = E ⇒ (A+E)·(E-A) = O ⇒ r(A+E) + r(E-A) ≤ n
- r(A+E) + r(E-A) ≥ r[(A+E)+(E-A)] = r(E) = n
- 即 r(A+E) + r(E-A) = n
4)判断题
(a)r(A,AB) = r(A) √
- r(A,AB) ≥ r(A)『越拼越大』
- r(A,AB) = r[A(E,B)] ≤ r(A)『越乘越小』
- 即 r(A,AB) = r(A)
(b)r(A,BA) = r(A) ×
- r(A,BA) ≠ r[(E,B)A](假设 A , B , E 均为 n×n 的矩阵,则 (E,B)n×2n 与 An×n 不能相乘)
五、初等矩阵
1. 知识点
-
初等行变换不改变矩阵的秩
-
初等行变换不改变列向量组的线性相关性
-
任意一个可逆矩阵都可以表示为若干个初等矩阵的乘积
-
任意一个可逆矩阵都可以通过初等行变换得到单位矩阵 E
任意一个可逆矩阵都可以通过初等列变换得到单位矩阵 E -
单位矩阵 E 可以通过初等行变换得到任意一个可逆矩阵
单位矩阵 E 可以通过初等列变换得到任意一个可逆矩阵 -
设 A,B 为同阶可逆矩阵,则 A 可以通过初等行变换得到 B
设 A,B 为同阶可逆矩阵,则 A 可以通过初等列变换得到 B -
设 A , B 是两个同型矩阵:
若矩阵 A 通过有限次初等变换得到矩阵 B ,则称 A 与 B 等价
若矩阵 A 通过有限次初等行变换得到矩阵 B ,则称 A 与 B 行等价
若矩阵 A 通过有限次初等列变换得到矩阵 B ,则称 A 与 B 列等价 -
矩阵等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 等价
⇔ 同型秩相等,r(A) = r(B)
⇔ A 经过有限次初等变换化为 B
⇔ 存在可逆矩阵 P , Q ,使得 PAQ = B
⇒ 若 Ax = 0 有非零解,则 Bx = 0 也有非零解
⇏ 方程 Ax = 0 与 Bx = 0 同解 -
矩阵行等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 行等价
⇔ r(A) = r(B) = r(AB)
⇔ A 与 B 的行向量组等价
⇔ 存在可逆矩阵 P ,使得 PA = B
⇔ 方程 Ax = 0 与 Bx = 0 同解 -
矩阵列等价的充分必要条件:已知 A 与 B 都是 m×n 的矩阵,则 A 与 B 列等价
⇔ r(A) = r(B) = r(A B)
⇔ A 与 B 的列向量组等价
⇔ 存在可逆矩阵 Q ,使得 AQ = B
⇒ 若 Ax = 0 有非零解,则 Bx = 0 也有非零解
⇏ 方程 Ax = 0 与 Bx = 0 同解 -
【补充】:
矩阵 | 逆 | 行列式 | 转置 | |
---|---|---|---|---|
互换 | Ei,j | (Ei,j)-1 = Ei,j | |Ei,j| = -1 | (Ei,j)T = Ei,j |
倍乘 | Ei(k) | (Ei(k))-1 = Ei(1/k) | |Ei(k)| = k | Ei(k)T = Ei(k) |
倍加 | Eij(k) | (Eij(k))-1 = Eij(-k) | |Eij(k)| = 1 | (Eij(k))T = Eji(k) |
2. 例题
六、分块矩阵
1. 分块矩阵的行列式
2. 分块矩阵的转置
3. 分块矩阵的逆
推导过程:
4. 分块矩阵的伴随
5. 分块矩阵的 n 次幂
6. 分块矩阵的秩
7. 例题
七、广义初等变换
1. 矩阵
2. 运算(左行右列)
3. 例题
『方法』:
『例题』: