YOLO V8 predict.py将命令行运行改为直接运行

文章讲述了如何在YOLOv8中通过命令行快速运行预测代码,提供必要的参数设置和代码示例,方便初学者调试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8命令行运行代码为:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'

在入门阶段进行调试时每次需在命令行运行较为麻烦,修改主函数参数的调用

主要修改的地方如下:

传入所需运行的参数模型   model

传入所需预测的图片地址  source

代码如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import ultralytics
# from ultralytics import YOLO


from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ROOT, ops


class DetectionPredictor(BasePredictor):

    def postprocess(self, preds, img, orig_imgs):
        """Postprocesses predictions and returns a list of Results objects."""
        preds = ops.non_max_suppression(preds,
                                        self.args.conf,
                                        self.args.iou,
                                        agnostic=self.args.agnostic_nms,
                                       max_det=self.args.max_det,
                                        classes=self.args.classes)

        results = []
        for i, pred in enumerate(preds):
            orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
            if not isinstance(orig_imgs, torch.Tensor):
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            path = self.batch[0]
            img_path = path[i] if isinstance(path, list) else path
            results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
        return results


def predict(model,source,cfg=DEFAULT_CFG, use_python=False):
    """Runs YOLO model inference on input image(s)."""
    # model = cfg.model or 'yolov8n.pt'
    #model =ultralytics.YOLO("../yolov8n.pt")
    # source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
    #     else 'https://ultralytics.com/images/bus.jpg'
    model=model
    source=source

    args = dict(model=model, source=source)
    if use_python:
        from ultralytics import YOLO
        YOLO(model)(**args)
    else:
        predictor = DetectionPredictor(overrides=args)
        predictor.predict_cli()


if __name__ == '__main__':
    model='yolov8n.pt'
    source="D:/CVproject/ultralytics-main/ultralytics/assets/bus.jpg"
    source="D:/CVproject/yolov7-main/inference/images/test5.jpg"
    predict(model,source)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值