Sound Event Detection: A Tutorial

本文概述了声音事件检测的任务,包括其目的、挑战、常用机器学习方法、数据处理、特征表示和深度学习模型(如CRNN)。重点讨论了实际应用中的问题,如多音事件和数据稀缺性,并提出了未来的研究方向,如主动学习和联邦学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

热爱之所以有力量就在于,你坚守它就好,永远不要去想它会有什么结果。

目录

前言

二、声音事件检测的挑战

三、声音事件检测通用的机器学习方法

四、数据

五、声音事件检测的信号处理方法

A.数据增强

B、特征表示

六、基于机器学习的声音事件检测

A.CRNN

B.先进的方法

七、性能评估

 八、未来展望

总结


前言

这里是对《Sound Event Detection: A Tutorial》做的笔记。

论文地址:https://arxiv.org/pdf/2107.05463.pdf


一、声音事件检测的简单介绍

       声音事件检测的目的就是识别出一个音频中声音事件的种类,以及检测出声音事件发生和结束的时间。如下图所示:

二、声音事件检测的挑战

         目前声音事件检测存在许多挑战,例如:

1、音事件有非常不同的声学特征,有些声音很短,比如枪声,有些声音很长,比如说话声等等。

2、在声音事件检测的实际应用中,需要检测的声音距离麦克风很远,导致麦克风接收到的目标事件的声压级低于环境中发生的其他声音的声压级,增加了检测的难度。

3、生活中发生的声音事件通常是多音的,意味着多个声音事件会在同一时间发生,也增加了检测的难度。

4、音频数据量少,并且标注困难,耗时大。导致目前音频数据集无标签的数据多,有标签的数据很少。

三、声音事件检测通用的机器学习方法

处理声音事件检测任务的主要方法是基于监督学习的,下图展示了一个用于声音事件检测的监督学习的通用分类系统。


        正如

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值