1004-Counting Stars
思路:
看见区间求和就感觉是一道线段树的题目,问题是怎么去维护两种操作。
第一个操作(lowbit)不是很好维护,但是我们计算复杂度之后可以发现,对于每一个数字暴力修改lowbit操作的复杂度是 l o g n logn logn的,那么对于每次操作最多复杂度就是 n l o g n nlogn nlogn,加上线段树本身的复杂度就是 n l o g 2 n nlog^2n nlog2n,所以可以直接暴力单点修改。
第二个操作翻译之后其实就是将这个数的最高位的1左移一位,对一个区间进行此操作其实就是将整个区间的最高位的1的加和左移一位,如此考虑我们就可以将最高位的1的加和与剩余位的加和分开维护,最后求和的时候将其相加就行。
需要注意的是我们暴力修改的时候也需要将懒标记下传,否则暴力修改的数不是真实的数。
代码:
#include<bits/stdc++.h>
#define endl '\n'
#define lson t << 1
#define rson t << 1 | 1
#define lowbit(x) (x&-x)
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
using namespace std;
typedef pair<int, int> PII;
typedef long long ll;
const int N = 1e5 + 100;
const int mod = 998244353;
ll pp[N];
void init() {
pp[0] = 1;
for(int i = 1; i <= N; ++ i) pp[i] = pp[i - 1] * 2 % mod;
}
int getcnt(int x) {
int res = 0;
for( ; x; x -= lowbit(x)) res ++;
return res;
}
int getup(int x) {
for(int i = 30; i >= 0; -- i) if((x >> i) & 1) return 1 << i;
return 0;
}
struct segment_tree{
int lazy[N << 2];
ll cnt[N << 2], up[N << 2], low[N << 2];
void build(int l, int r, int t) {
lazy[t] = up[t] = low[t] = cnt[t] = 0;
if(l == r) {
int x; cin >> x;
cnt[t] = getcnt(x), up[t] = getup(x), low[t] = x - up[t];
return ;
}
int mid = (l + r) >> 1;
build(l, mid, lson), build(mid + 1, r, rson);
pushup(t);
}
void pushup(int t) {
up[t] = (up[lson] + up[rson]) % mod;
low[t] = (low[lson] + low[rson]) % mod;
cnt[t] = max(cnt[lson], cnt[rson]);
}
void pushdown(int t) {
if(lazy[t]) {
int lz = lazy[t];
lazy[t] = 0;
lazy[lson] += lz, lazy[rson] += lz;
up[lson] = up[lson] * pp[lz] % mod;
up[rson] = up[rson] * pp[lz] % mod;
}
}
void upd1(int l, int r, int t, int L, int R) {
if(cnt[t] == 0) return ;
if(l > R || r < L) return ;
if(l == r) {
cnt[t] --, low[t] -= lowbit(low[t]);
if(cnt[t] == 0) up[t] = 0;
return ;
}
pushdown(t);
int mid = (l + r) >> 1;
upd1(l, mid, lson, L, R), upd1(mid + 1, r, rson, L, R);
pushup(t);
}
void upd2(int l, int r, int t, int L, int R) {
if(L <= l && r <= R) {
up[t] = up[t] * 2 % mod;
lazy[t] ++;
return ;
}
pushdown(t);
int mid = (l + r) >> 1;
if(mid >= L) upd2(l, mid, lson, L, R);
if(R > mid) upd2(mid + 1, r, rson, L, R);
pushup(t);
}
ll query(int l, int r, int t, int L, int R) {
if(L <= l && r <= R)
return (low[t] + up[t]) % mod;
pushdown(t);
int mid = (l + r) >> 1;
ll res = 0;
if(mid >= L) res = (res + query(l, mid, lson, L, R)) % mod;
if(R > mid) res = (res + query(mid + 1, r, rson, L, R)) % mod;
return res % mod;
}
}Tree;
void solve() {
int n, q;
cin >> n;
Tree.build(1, n, 1);
cin >> q;
while(q --) {
int op, x, y;
cin >> op >> x >> y;
if(op == 1) cout << Tree.query(1, n, 1, x, y) % mod << endl;
else if(op == 2) Tree.upd1(1, n, 1, x, y);
else Tree.upd2(1, n, 1, x, y);
}
}
int main() {
IOS;
init();
int t;
cin >> t;
while(t --) solve();
return 0;
}