1647:迷路
时间限制: 1000 ms 内存限制: 524288 KB
提交数: 97 通过数: 69
【题目描述】
原题来自:SCOI 2009
Windy 在有向图中迷路了。 该有向图有 N 个节点,Windy 从节点 0 出发,他必须恰好在 T 时刻到达节点 N−1。
现在给出该有向图,你能告诉 Windy 总共有多少种不同的路径吗?
注意:Windy 不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
【输入】
第一行包含两个整数,N,T;
接下来有 N 行,每行一个长度为 N 的字符串。第 i 行第 j 列为 0 表示从节点 i 到节点 j 没有边,为 1 到 9 表示从节点 i 到节点 j 需要耗费的时间。
【输出】
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以 2009 的余数。
【输入样例】
2 2
11
00
【输出样例】
1
【提示】
样例说明 1
0→0→1
样例输入 2
5 30
12045
07105
47805
12024
12345
样例输出 2
852
数据范围与提示:
对于 30% 的数据,满足 2≤N≤5,1≤T≤30;
对于 100% 的数据,满足 2≤N≤10,1≤T≤109 。
当点i到点j的距离大于1时等价于向i,j两点其中增加若干个点形成一个链条,使链条末端点到达j点的距离为1
最大距离-1为最大插入点数
连接节点
化为布尔邻接矩阵
#include<iostream>
#include<cstring>
using namespace std;
#define ll long long
const int maxx=101;
ll MOD=2009;
struct Mat
{
ll m[maxx][maxx];
int r,l;
void Basic()
{
if(l!=r)
throw "²»ÊÇÁÚ½Ó¾ØÕó";
for(int i=0; i<r; i++)
for(int j=0; j<r; j++)
m[i][j]=(i==j);
}
Mat operator *(const Mat&c)const
{
Mat er;
memset(er.m,0,sizeof(er.m));
if(l!=c.r)
throw "sad";
er.r=r;
er.l=c.l;
for(int i=0; i<r; i++)
for(int j=0; j<c.l; j++)
for(int k=0; k<l; k++)
{
er.m[i][j]=(er.m[i][j]+m[i][k]*c.m[k][j])%MOD;
}
return er;
}
friend ostream& operator<<(ostream &in,const Mat &c);
};
ostream& operator<<(ostream &in,const Mat &c)
{
for(int i=0; i<c.r; i++)
{
for(int j=0; j<c.l; j++)
in<<c.m[i][j]<<' ';
in<<endl;
}
return in;
}
int n,k;
ll mp[maxx][maxx];
ll powsM(Mat &a,ll b)
{
Mat ans;
ans.l=ans.r=n*9;
ans.Basic();
while(b)
{
if(b&1)
ans=ans*a;
a=a*a;
b>>=1;
}
return ans.m[0][(n-1)*9];
}
int main()
{
//
cin>>n>>k;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
char t;
cin>>t;
mp[i][j]=t-'0';
}
//0_1_2_3 4 5 6 7 8
Mat foke;
foke.l=foke.r=n*9;
for(int i=0;i<n*9;i++)
if((i+1)%9){
foke.m[i][i+1]=1;
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(mp[i][j]==0)continue;
foke.m[9*i+(mp[i][j]-1)][j*9]=1;
}
cout<<powsM(foke,k)<<endl;
return 0;
}