1647:迷路(矩阵快速幂+矩阵点的拆分)

1647:迷路
时间限制: 1000 ms 内存限制: 524288 KB
提交数: 97 通过数: 69
【题目描述】
原题来自:SCOI 2009
Windy 在有向图中迷路了。 该有向图有 N 个节点,Windy 从节点 0 出发,他必须恰好在 T 时刻到达节点 N−1。
现在给出该有向图,你能告诉 Windy 总共有多少种不同的路径吗?
注意:Windy 不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
【输入】
第一行包含两个整数,N,T;
接下来有 N 行,每行一个长度为 N 的字符串。第 i 行第 j 列为 0 表示从节点 i 到节点 j 没有边,为 1 到 9 表示从节点 i 到节点 j 需要耗费的时间。
【输出】
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以 2009 的余数。
【输入样例】
2 2
11
00
【输出样例】
1
【提示】
样例说明 1
0→0→1
样例输入 2
5 30
12045
07105
47805
12024
12345
样例输出 2
852
数据范围与提示:
对于 30% 的数据,满足 2≤N≤5,1≤T≤30;
对于 100% 的数据,满足 2≤N≤10,1≤T≤109 。
当点i到点j的距离大于1时等价于向i,j两点其中增加若干个点形成一个链条,使链条末端点到达j点的距离为1
在这里插入图片描述
最大距离-1为最大插入点数
在这里插入图片描述
连接节点
在这里插入图片描述

化为布尔邻接矩阵

#include<iostream>
#include<cstring>
using namespace std;
#define ll long long
const int maxx=101;
ll MOD=2009;
struct Mat
{
    ll m[maxx][maxx];
    int r,l;
    void Basic()
    {
        if(l!=r)
            throw "²»ÊÇÁÚ½Ó¾ØÕó";
        for(int i=0; i<r; i++)
            for(int j=0; j<r; j++)
                m[i][j]=(i==j);
    }
    Mat operator *(const Mat&c)const
    {
        Mat er;
        memset(er.m,0,sizeof(er.m));
        if(l!=c.r)
            throw "sad";
        er.r=r;
        er.l=c.l;
        for(int i=0; i<r; i++)
            for(int j=0; j<c.l; j++)
                for(int k=0; k<l; k++)
                {
                    er.m[i][j]=(er.m[i][j]+m[i][k]*c.m[k][j])%MOD;
                }
        return er;
    }
    friend ostream& operator<<(ostream &in,const Mat &c);
};
ostream& operator<<(ostream &in,const Mat &c)
{
    for(int i=0; i<c.r; i++)
    {
        for(int j=0; j<c.l; j++)
            in<<c.m[i][j]<<' ';
        in<<endl;
    }
    return in;
}
int n,k;
ll mp[maxx][maxx];
ll powsM(Mat &a,ll b)
{

    Mat ans;
    ans.l=ans.r=n*9;
    ans.Basic();
    while(b)
    {
        if(b&1)
            ans=ans*a;
        a=a*a;
        b>>=1;
    }

    return ans.m[0][(n-1)*9];
}
int main()
{
    //

    cin>>n>>k;
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
        {
            char t;
            cin>>t;
            mp[i][j]=t-'0';
        }
    //0_1_2_3 4 5 6 7 8
    Mat foke;
    foke.l=foke.r=n*9;
    for(int i=0;i<n*9;i++)
        if((i+1)%9){
        foke.m[i][i+1]=1;
    }
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        {
            if(mp[i][j]==0)continue;
            foke.m[9*i+(mp[i][j]-1)][j*9]=1;
        }
    cout<<powsM(foke,k)<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值