1) 蛮力法 代码
#include<iostream>
#include <math.h>
#include <windows.h>
#include<stdlib.h>
#include<time.h>
#include<iomanip>
#define N 100
using namespace std;
//1.动态规划法
//求解0/1背包问题,实质是一个填表的过程
int *KnapSack(int w[],int v[],int n,int C){
int V[n+1][C+1];
int *x;
x = (int *)malloc(sizeof(int)*(n-1));
int i,j;
//初始化第0列
for(i=0;i<=n;i++)
V[i][0] = 0;
//初始化第0行
for(j=0;j<=C;j++)
V[0][j] = 0;
//计算第i行,进行第i次迭代
for(i=1;i<=n;i++)
for(j=1;j<=C;j++)
if(j<w[i]) //物品重量大于背包容量
V[i][j] = V[i-1][j];
else
V[i][j] = max(V[i-1][j],V[i-1][j-w[i]]+v[i]);
//求放入背包的物品
for(j=C,i=n;i>0;i--){
if(V[i][j]>V[i-1][j]){
x[i]=1;
j=j-w[i];
}
else
x[i]=0;
}
return x;//输出所选物品
}
//2.蛮力法
void conversion(int n,int b[]){
int i;
for(i=0;i<N;i++){
b[i] = n%2;
n = n/2;
if(n==0)
break;
}
}
int *BagProblem(int w[],int v[],int C,int len){
int maxValue = 0;
int b[N];
int *temp;//temp就是解
temp = (int *)malloc(sizeof(int)*len); //分配长度=物品的数目
int value,weight,i,j;
//穷举2的n方个可能的选择
for(i=0;i<pow(2,len);i++){
//初始化数组b为0
for(j=0;j<len;j++){
b[j] = 0;
}
//转化
conversion(i,b);
value = 0;
weight = 0;
for(j=0;j<len;j++){
weight += w[j]*b[j];
value += v[j]*b[j];
}
//如果当前的子集满足此两个条件,则为目前最优
if(weight<=C&&maxValue<value){
maxValue = value;
//将temp重置
for(j=0;j<len;j++){
temp[j]=0;
}
//将当前的b[j]复制到temp保存
for(j=0;j<len;j++){
temp[j]=b[j];
}
}
}
//循环完毕,返回结果子集
return temp;
}
int main(){
// //初始化物品的重量和价值
int w[]={2,2,6,5,4};
int v[]={6,3,5,4,6};
//(要特别注意!!!)动态规划算法,从w1[1],v1[1]开始
int w1[6]={0,2,2,6,5,4};
int v1[6]={0,6,3,5,4,6};
int C=10;
int len = 5,i;
int value1=0;
int value2=0;
cout<<endl;
//动态规划法:求时间花费
LARGE_INTEGER nFreq;
LARGE_INTEGER nBeginTime;
LARGE_INTEGER nEndTime;
double time1;
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBeginTime);
//计时代码区间
int *result1 = KnapSack(w1,v1,len,C);
QueryPerformanceCounter(&nEndTime);
time1=(double)(nEndTime.QuadPart-nBeginTime.QuadPart)*1000000000/(double)(nFreq.QuadPart);
cout<<"======动态规划法======"<<endl;;
cout<<"装入背包的物品有: ";
//不计时代码区间
//动态规划法: 输出选择的物品
for(i=1;i<=len;i++){
if(result1[i]==0)
continue;
else
cout<<i<<" ";//输出所选物品的序号
}
cout<<endl;
//动态规划法:输出能装进背包的最大价值
for(i=1;i<=len;i++){
value1 += v1[i]*result1[i];
}
cout<<"最大价值为: "<<value1<<endl;
cout<<"所用的时间为: ";
cout << time1; //单位是纳秒.
cout<<endl;
cout<<endl;
cout<<endl;
double time2;
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBeginTime);
//计时代码区间
int *result2 = BagProblem(w,v,C,len);
QueryPerformanceCounter(&nEndTime);
time2=(double)(nEndTime.QuadPart-nBeginTime.QuadPart)*1000000000/(double)(nFreq.QuadPart);
//不计时代码区间
//蛮力法:输出选择的物品
cout<<"======蛮力法======"<<endl;
cout<<"装入背包的物品有: ";
for(i=0;i<len;i++){
if(result2[i]==0)
continue;
else
cout<<i+1<<" ";//输出所选物品的序号
}
cout<<endl;
//蛮力法:输出最大价值
for(i=0;i<len;i++){ //输出最大价值
value2 += v[i]*result2[i];
}
cout<<"最大价值为: "<<value2<<endl;
//输出蛮力法耗费的时间
cout<<"所用的时间: ";
cout<< time2; //单位是纳秒.
return 0;
}
结果测试:
![在这里插入图片描述](https://img-blog.csdnimg.cn/2021051009100185.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NTkzOTYxNA==,size_16,color_FFFFFF,t_70)
蛮力法+动态规划法 求解01背包问题(完整代码)
最新推荐文章于 2024-09-21 21:07:19 发布