蛮力法+动态规划法 求解01背包问题(完整代码)

1)	蛮力法	代码
#include<iostream>
#include <math.h>
#include <windows.h>
#include<stdlib.h>
#include<time.h> 
#include<iomanip>
#define N 100
using namespace std;



//1.动态规划法
//求解0/1背包问题,实质是一个填表的过程 
int *KnapSack(int w[],int v[],int n,int C){
	int V[n+1][C+1];  
	int *x; 
	x = (int *)malloc(sizeof(int)*(n-1));
	int i,j;
	//初始化第0列 
	for(i=0;i<=n;i++)
		V[i][0] = 0;
	//初始化第0行 
	for(j=0;j<=C;j++)
		V[0][j] = 0;
	//计算第i行,进行第i次迭代
	for(i=1;i<=n;i++)
		for(j=1;j<=C;j++)
			if(j<w[i])    //物品重量大于背包容量 
				V[i][j] = V[i-1][j];
			else
				V[i][j] = max(V[i-1][j],V[i-1][j-w[i]]+v[i]);
	//求放入背包的物品 
	for(j=C,i=n;i>0;i--){
		if(V[i][j]>V[i-1][j]){
			x[i]=1;
			j=j-w[i];
		}
		else
			x[i]=0;
	}
	return x;//输出所选物品 
}






//2.蛮力法 
void conversion(int n,int b[]){
	int i;
	for(i=0;i<N;i++){
	b[i] = n%2;
	n = n/2;
	if(n==0)
		break;
	}
}

int *BagProblem(int w[],int v[],int C,int len){
	int maxValue = 0;
	int b[N];
	int *temp;//temp就是解
	temp = (int *)malloc(sizeof(int)*len); //分配长度=物品的数目 
	int value,weight,i,j;
	
	//穷举2的n方个可能的选择 
	for(i=0;i<pow(2,len);i++){
		//初始化数组b为0 
		for(j=0;j<len;j++){
			b[j] = 0;
		}
		//转化 
		conversion(i,b);
		value = 0;
		weight = 0;
		
		for(j=0;j<len;j++){
			weight += w[j]*b[j];
			value += v[j]*b[j];
		}
		//如果当前的子集满足此两个条件,则为目前最优 
		if(weight<=C&&maxValue<value){
			maxValue = value;
			//将temp重置 
			for(j=0;j<len;j++){
				temp[j]=0;
			}
			//将当前的b[j]复制到temp保存 
			for(j=0;j<len;j++){
				temp[j]=b[j];
			}
		} 
	}
	//循环完毕,返回结果子集
	return temp;
}





int main(){
	
	
	
//	//初始化物品的重量和价值  
    int w[]={2,2,6,5,4};
	int v[]={6,3,5,4,6};
//(要特别注意!!!)动态规划算法,从w1[1],v1[1]开始
	int  w1[6]={0,2,2,6,5,4};
	int  v1[6]={0,6,3,5,4,6}; 

	int C=10; 
	int len = 5,i;
	int value1=0;
	int value2=0;
	cout<<endl; 
	
	
		//动态规划法:求时间花费 
	LARGE_INTEGER nFreq;
    LARGE_INTEGER nBeginTime;
    LARGE_INTEGER nEndTime;
    double time1;
   
	QueryPerformanceFrequency(&nFreq);
	QueryPerformanceCounter(&nBeginTime);
	
	//计时代码区间 
	int *result1 = KnapSack(w1,v1,len,C);
		 
	QueryPerformanceCounter(&nEndTime);
	time1=(double)(nEndTime.QuadPart-nBeginTime.QuadPart)*1000000000/(double)(nFreq.QuadPart);
	
	
	 cout<<"======动态规划法======"<<endl;;
	 cout<<"装入背包的物品有:  ";
	//不计时代码区间 
	//动态规划法: 输出选择的物品 
	for(i=1;i<=len;i++){
		if(result1[i]==0)
			continue;
		else
			cout<<i<<" ";//输出所选物品的序号 
	}
	cout<<endl;
	//动态规划法:输出能装进背包的最大价值 
	for(i=1;i<=len;i++){
		value1 += v1[i]*result1[i];
	}
	cout<<"最大价值为:   "<<value1<<endl;
	cout<<"所用的时间为:  "; 
    cout  << time1; //单位是纳秒.
    cout<<endl; 
    cout<<endl;
	cout<<endl; 
    double time2;
   
    
	QueryPerformanceFrequency(&nFreq);
	QueryPerformanceCounter(&nBeginTime);
	//计时代码区间
		 
	int *result2 = BagProblem(w,v,C,len);
		
	QueryPerformanceCounter(&nEndTime);
	time2=(double)(nEndTime.QuadPart-nBeginTime.QuadPart)*1000000000/(double)(nFreq.QuadPart);
	//不计时代码区间 
	
	
	
	//蛮力法:输出选择的物品 
	 cout<<"======蛮力法======"<<endl;
	 cout<<"装入背包的物品有:  ";
	for(i=0;i<len;i++){ 
		if(result2[i]==0)
			continue;
		else
			cout<<i+1<<" ";//输出所选物品的序号 
	}
	cout<<endl;
	
	
	//蛮力法:输出最大价值 
	for(i=0;i<len;i++){ //输出最大价值 
		value2 += v[i]*result2[i];
	}
	cout<<"最大价值为:   "<<value2<<endl;
	//输出蛮力法耗费的时间
	cout<<"所用的时间:    ";	
    cout<< time2; //单位是纳秒.
	return 0;
}

结果测试:

![在这里插入图片描述](https://img-blog.csdnimg.cn/2021051009100185.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NTkzOTYxNA==,size_16,color_FFFFFF,t_70)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值