120. 三角形最小路径和
给定一个三角形 triangle
,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i
,那么下一步可以移动到下一行的下标 i
或 i + 1
。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]]
输出:-10
提示:
1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-10^4 <= triangle[i][j] <= 10^4
进阶:
- 你可以只使用
O(n)
的额外空间(n
为三角形的总行数)来解决这个问题吗?
动态规划,数组递推
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
// 定义:走到第 i 行第 j 个元素的最小路径和是 dp[i][j]
int[][] dp = new int[n][n];
for (int i = 0; i < dp.length; i++) {
// 因为要求最小值,所以我们把元素全都初始化为极大值
Arrays.fill(dp[i], Integer.MAX_VALUE);
}
// base case,第零行只有一个元素。
dp[0][0] = triangle.get(0).get(0);
// 进行状态转移。从三角形的第一行开始计算
for (int i = 1; i < dp.length; i++) {
// 获取该行的所有元素
List<Integer> row = triangle.get(i);
// 正序遍历该行的所有元素
for (int j = 0; j < row.size(); j++) {
// 状态转移方程。如果j>=1,则有两条路径走到(i,j)。
if (j - 1 >= 0) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1]) + row.get(j);
} else { // 如果j=0,则只有一条路径走到(i,j)
dp[i][j] = dp[i - 1][j] + row.get(j);
}
}
}
// 找出落到最后一层的最小路径和
int res = Integer.MAX_VALUE;
for (int j = 0; j < dp[n - 1].length; j++) {
res = Math.min(res, dp[n - 1][j]);
}
return res;
}
}
- 时间复杂度:O(n^2),其中 n 是三角形的行数。
- 空间复杂度:O(n^2)。我们需要一个 n∗n 的二维数组存放所有的状态。
滚动更新,O(n)
观察状态转移方程:
dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1]) + row.get(j);
我们发现dp
数组中第i
行的第j
个元素的值依赖于上一行的第j
和第j-1
个元素,因此我们可以用滚动更新的方法优化空间复杂度。注意要正序遍历i
,倒序遍历j
,因为dp[i][j]
依赖于dp[i-1][j-1]
而不是dp[i][j-1]
。
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
// 使用一维数组 dp 来存储当前行的最小路径和
int[] dp = new int[n];
// 初始化 dp 数组
Arrays.fill(dp, Integer.MAX_VALUE);
// base case
dp[0] = triangle.get(0).get(0);
// 进行状态转移
for (int i = 1; i < n; i++) {
List<Integer> row = triangle.get(i);
// 从右向左遍历,先计算dp[j],再计算dp[j-1],以防止覆盖上一轮 dp[j-1] 的值,我们需要用上一轮的dp[j-1]计算dp[j]。
for (int j = row.size() - 1; j >= 0; j--) {
// 状态转移方程
if (j - 1 >= 0) {
// 此时的dp[j-1]是上一轮i循环中的dp[j-1],因为j是后序遍历的,所以此时 dp[j-1]还没有被更新。
dp[j] = Math.min(dp[j], dp[j - 1]) + row.get(j);
} else {
dp[j] = dp[j] + row.get(j);
}
}
}
// 找出落到最后一层的最小路径和
int res = Integer.MAX_VALUE;
for (int j = 0; j < n; j++) {
res = Math.min(res, dp[j]);
}
return res;
}
}
- 时间复杂度:O(n^2),其中 n 是三角形的行数。
- 空间复杂度:O(n)。