225. 用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push
、top
、pop
和 empty
)。
实现 MyStack
类:
void push(int x)
将元素 x 压入栈顶。int pop()
移除并返回栈顶元素。int top()
返回栈顶元素。boolean empty()
如果栈是空的,返回true
;否则,返回false
。
注意:
- 你只能使用队列的基本操作 —— 也就是
push to back
、peek/pop from front
、size
和is empty
这些操作。 - 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9
- 最多调用
100
次push
、pop
、top
和empty
- 每次调用
pop
和top
都保证栈不为空
进阶:你能否仅用一个队列来实现栈。
两个队列
class MyStack {
Queue<Integer> queue1; // 主队列,用于存储栈中的元素
Queue<Integer> queue2; // 辅助队列,用于在push操作中暂存数据
public MyStack() {
queue1 = new LinkedList<Integer>(); // 初始化主队列
queue2 = new LinkedList<Integer>(); // 初始化辅助队列
}
public void push(int x) {
queue2.offer(x); // 首先将新元素放入辅助队列
while (!queue1.isEmpty()) {
queue2.offer(queue1.poll()); // 将主队列中的所有元素转移到辅助队列,确保新加入的元素在队列前端,这样下面弹出元素时弹出的是刚才加入的新元素x。
}
Queue<Integer> temp = queue1; // 交换两个队列的引用。注意此时queue1是空队列。
queue1 = queue2; // 主队列现在是辅助队列,即包含了新元素在最前端的队列
queue2 = temp; // 把空队列当作下次操作的辅助队列
}
public int pop() {
return queue1.poll(); // 从主队列移除并返回队头元素,模拟栈的弹出操作
}
public int top() {
return queue1.peek(); // 返回主队列的队头元素,即栈顶元素,但不移除
}
public boolean empty() {
return queue1.isEmpty(); // 如果主队列为空,则栈为空
}
}
- 时间复杂度: 入栈操作 O ( n ) O(n) O(n) ,其余操作都是 O ( 1 ) O(1) O(1) ,其中 n n n 是栈内的元素个数。入栈操作需要将 queue1 中的 n n n 个元素出队,并入队 n + 1 n+1 n+1 个元素到 queue2 ,共有 2 n + 1 2n+1 2n+1 次操作,每次出队和入队操作的时间复杂度都是 O ( 1 ) O(1) O(1) ,因此入栈操作的时间复杂度是 O ( n ) O(n) O(n) 。出栈操作对应将 queue1 的前端元素出队,时间复杂度是 O ( 1 ) O(1) O(1) 。获得栈顶元素操作对应获得 queue1 的前端元素,时间复杂度是 O ( 1 ) O(1) O(1) 。判断栈是否为空操作只需要判断 queue1 是否为空,时间复杂度是 O ( 1 ) O(1) O(1) 。
- 空间复杂度: O ( n ) O(n) O(n) ,其中 n n n 是栈内的元素个数。需要使用两个队列存储栈内的元素。
一个队列
class MyStack {
Queue<Integer> queue;
public MyStack() {
queue = new LinkedList<Integer>();
}
public void push(int x) {
// 记录此时队列中的元素的个数。重点
int n = queue.size();
queue.offer(x);
// 把x前面的元素弹出再入队
for (int i = 0; i < n; i++) {
queue.offer(queue.poll());
}
}
public int pop() {
return queue.poll();
}
public int top() {
return queue.peek();
}
public boolean empty() {
return queue.isEmpty();
}
}
时空复杂度同上