字节阿里面试题——225. 用队列实现栈

225. 用队列实现栈

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(pushtoppopempty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false

注意:

  • 你只能使用队列的基本操作 —— 也就是 push to backpeek/pop from frontsizeis empty 这些操作。
  • 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:

输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]

解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

提示:

  • 1 <= x <= 9
  • 最多调用100pushpoptopempty
  • 每次调用 poptop 都保证栈不为空

进阶:你能否仅用一个队列来实现栈。

两个队列

class MyStack {
    Queue<Integer> queue1;  // 主队列,用于存储栈中的元素
    Queue<Integer> queue2;  // 辅助队列,用于在push操作中暂存数据

    public MyStack() {
        queue1 = new LinkedList<Integer>();  // 初始化主队列
        queue2 = new LinkedList<Integer>();  // 初始化辅助队列
    }
    
    public void push(int x) {
        queue2.offer(x);  // 首先将新元素放入辅助队列
        
        while (!queue1.isEmpty()) {
            queue2.offer(queue1.poll());  // 将主队列中的所有元素转移到辅助队列,确保新加入的元素在队列前端,这样下面弹出元素时弹出的是刚才加入的新元素x。
        }
        
        Queue<Integer> temp = queue1;  // 交换两个队列的引用。注意此时queue1是空队列。
        queue1 = queue2;  // 主队列现在是辅助队列,即包含了新元素在最前端的队列
        queue2 = temp;  // 把空队列当作下次操作的辅助队列
    }
    
    public int pop() {
        return queue1.poll();  // 从主队列移除并返回队头元素,模拟栈的弹出操作
    }
    
    public int top() {
        return queue1.peek();  // 返回主队列的队头元素,即栈顶元素,但不移除
    }
    
    public boolean empty() {
        return queue1.isEmpty();  // 如果主队列为空,则栈为空
    }
}
  • 时间复杂度: 入栈操作 O ( n ) O(n) O(n) ,其余操作都是 O ( 1 ) O(1) O(1) ,其中 n n n 是栈内的元素个数。入栈操作需要将 queue1 中的 n n n 个元素出队,并入队 n + 1 n+1 n+1 个元素到 queue2 ,共有 2 n + 1 2n+1 2n+1 次操作,每次出队和入队操作的时间复杂度都是 O ( 1 ) O(1) O(1) ,因此入栈操作的时间复杂度是 O ( n ) O(n) O(n) 。出栈操作对应将 queue1 的前端元素出队,时间复杂度是 O ( 1 ) O(1) O(1) 。获得栈顶元素操作对应获得 queue1 的前端元素,时间复杂度是 O ( 1 ) O(1) O(1) 。判断栈是否为空操作只需要判断 queue1 是否为空,时间复杂度是 O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( n ) O(n) O(n) ,其中 n n n 是栈内的元素个数。需要使用两个队列存储栈内的元素。

一个队列

class MyStack {
    Queue<Integer> queue;

    public MyStack() {
        queue = new LinkedList<Integer>();
    }
    
    public void push(int x) {
        // 记录此时队列中的元素的个数。重点
        int n = queue.size();
        
        queue.offer(x);
        // 把x前面的元素弹出再入队
        for (int i = 0; i < n; i++) {
            queue.offer(queue.poll());
        }
    }
    
    public int pop() {
        return queue.poll();
    }
    
    public int top() {
        return queue.peek();
    }
    
    public boolean empty() {
        return queue.isEmpty();
    }
}

时空复杂度同上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值