粒子群优化算法及其应用

粒子群优化(PSO)算法由Kennedy和Eberhart于1995年提出,灵感来源于鸟群觅食行为。算法通过群体中粒子的个体极值和全局极值更新,寻找最佳解决方案。在每次迭代中,粒子更新速度和位置,最终找到最优解。PSO已广泛应用于神经网络训练、电力系统、图像处理等多个领域。在车辆路径问题(VRP)的求解中,与其他算法如遗传算法比较,显示了其优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

产生背景

粒子群优化(Particle Swarm Optimization, PSO)算法是由美国普渡大学的Kennedy和Eberhart于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:

一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

粒子群优化算法的基本原理

基本思想

将每个个体看作n维搜索空间中一个没有体积质量的粒子,在搜索空间中以一定的速度飞行,该速度决定粒子飞行的方向和距离。所有粒子有一个由优化函数决定的适应值。

基本原理

PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解称为个体极值。另个一是整个种群目前找到的最优解,这个解称为全局极值。

算法定义

在n 维连续搜索空间中,对粒子群中的第i (i=1, 2, , m)个粒子进行定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第1部分是粒子在前一时刻的速度;
第2部分为个体“认知”分量,表示粒子本身的思考,将现有的位置和曾经经历过的最优位置相比。
第3部分是群体“社会(social)”分量,表示粒子间的信息共享与相互合作。
在这里插入图片描述
分别控制个体认知分量和群体社会分量相对贡献的学习率。
随机系数增加搜索方向的随机性和算法多样性。
基于学习率
Kennedy给出以下4种类型的PSO模型:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

粒子群优化算法的流程:

(1)初始化每个粒子。在允许范围内随机设置每个粒子的初始位置和速度。
(2)评价每个粒子的适应度。计算每个粒子的目标函数。
(3)设置每个粒子的Pi。对每个粒子,将其适应度与其经 历过的最好位置Pi进行比较,如果优于Pi,则将其作为该粒子的最好位置Pi。
(4)设置全局最优值Pg。对每个粒子,将其适应度与群体经历过的最好位置Pg进行比较,如果优于Pg,则将其作为当前群体的最好位置Pg。
(5)更新粒子的速度和位置。根据式(6.20)更新粒子的速度和位置。
(6)检查终止条件。如果未达到设定条件(预设误差或者迭代的次数),则返回第(2)步。

粒子群优化算法流程图

在这里插入图片描述

粒子群优化算法的参数分析

PSO算法的参数

在这里插入图片描述
最大速度Vmax
在这里插入图片描述
权重因子
在这里插入图片描述

位置更新方程中各部分的影响

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参数设置在这里插入图片描述

粒子群优化算法应用领域

粒子群优化算法已在诸多领域得到应用,归纳如下:

(1)神经网络训练 (7)经济领域
(2)化工系统领域 (8)图像处理领域
(3)电力系统领域 (9)生物信息领域
(4)机械设计领域 (10)医学领域
(5)通讯领域 (11)运筹学领域
(6)机器人领域 ………….

粒子群优化算法求解车辆路径问题

车辆路径问题(VRP)的模型

在这里插入图片描述
在这里插入图片描述

编码与初始种群在这里插入图片描述

实验结果

粒子群优化算法的各个参数设置如下:
种群规模:50
迭代次数:1000
c1的初始值为1,随迭代的进行,线性减小到0
C2=c3=1.4
Vmax<1000
优化结果及其与遗传算法的比较如表所示。
欢迎大家加我微信交流讨论(请备注csdn上添加)
在这里插入图片描述

粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群 集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简 单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了 的广泛关注,逐渐成为一个新的研究热点。目前,粒子群优化算法应用 于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果, 有着广阔的应用前景。 论文的主要工作有 对粒子群优化算法的理论基础和研究现状作了简要的介绍,分 析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的 研究,并进行了相应的仿真实验。 分析了粒子群优化算法存在的问题,主要包括参数设置问 题、算法“早熟”问题和算法稳定性问题。在粒子群优化算法中,参数 的设置会影响算法优化的结果,因此,如何选择合适的参数达到最好的 优化结果是算法需要解决的问题。“早熟”问题是优化算法普遍存在的 问题。如果粒子在搜索最优值时过早收敛,就会使算法的寻优停滞在局 部最小值,无法找到全局最优解。由于算法中粒子的初始位置、速度和 一些参数是被随机初始化的,因此每一次算法运行的结果并不相同,有 时结果的差别很大,这样就导致了算法优化结果不稳定。 针对粒子群优化算法存在的问题,论文提出了一种新的改进 算法—基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子 群优化方法,从“粒子进化”和“多种群”两个方面对标准粒子群算法 进行改进。多个粒子群彼此独立地搜索解空间,保持了粒子种群的多样 性,从而增强了全局搜索能力而适当的“粒子进化”可以使陷入局部 最优的粒子迅速跳出,有效的避免了算法“早熟”,提高了算法的稳定 性。通过对测试函数进行仿真实验,验证了该算法的有效性。 将基于粒子进化的多粒子群优化算法应用于线性瞬时混合的 盲源分离。将该算法的仿真实验结果与标准粒子群优化算法的结果相 比,前者在分离混合信号时所需要的迭代次数少,算法的稳定性高。 将基于粒子进化的多粒子群优化算法用于求解非线性方程组。 该算法求解精度高、收敛速度快,而且克服了一些算法对初值的敏感和 需要函数可导的困难,能较快地求出复杂非线性方程组的最优解。数值 仿真结果显示了该算法的有效性和可行性,为求解非线性方程组提供了 一种实用的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程子的小段

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值