codetop标签树刷题(一)!!暴打面试官!!!!

1.二叉树的层序遍历

在这里插入图片描述
层序遍历一般写法,通过一个while循环控制从上向下一层层遍历,for循坏控制每一层从左到右

class Solution{
public:
	vector<vector<int>> levelOrder(TreeNode* root){
		vector<vector<int>> res;
		if(root == nullptr) return res;
		queue<TreeNode*> q;
		q.push(root);
		// while循环控制从上到下
		while(!q.empty()){
			int size = q.size();
			vector<int> level;
			// for循环
			for(int i = 0; i < sz; i ++){
				TreeNode* cur = q.front();
				q.pop();
				level.push_back(cur->val);
				if(cur->val != nullptr) q.push(cur->left);
				if(cur->val != nullptr) q.push(cur->right);
			}
			res.push_back(level);
		}
		return res;
	}
};

2.二叉树的层序遍历II

返回其节点值 自底向上 的层序遍历。

用双端队列存储

class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
    	deque<vector<int>> res;
    	if(root == nullptr) return vector<vector<int>>(res.begin(), res.end());
    	queue<TreeNode*> q;
    	q.push(root);
    	while(!q.empty()){
    		int size = q.size();
    		vector<int> level;
    		for(int i = 0; i < size; i ++){
    			TreeNode* cur = q.front();
    			q.pop();
    			level.push_back(cur->val);
    			if(cur->left != nullptr) q.push(cur->left);
    			if(cur->right != nullptr) q.push(cur->right);
    		}
    		res.push_front(level);//重点!!!
    	}
    	return vector<vector<int>>(res.begin(), res.end());
    }
};	

3.二叉树的锯齿形层次遍历

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。
在这里插入图片描述
和层次遍历是一样的,只是多用一个flag来控制遍历方向。flag 为 true 时向右,false 时向左。

class Solution{
public:
	vector<vector<int>> zigzagLevelOrder(TreeNode* root){
		vector<vector<int>> res;
		if(root == nullptr) return res;

		queue<TreeNode*> q;
		q.push(root);
		bool flag = true;
		
		while(!q.empty()){
			int size = q.size();
			deque<int> level;// 双端队列
			for(int i = 0; i < size; i ++){
				TreeNode* cur = q.front();
				q.pop();
				if(flag){
					level.push_back(cur->val);
				}else{
					level.push_front(cur->val);
				}
				if(cur->left != nullptr) q.push(cur->left);
				if(cur->right != nullptr) q.push(cur->right);
			}
			flag = !flag;// 一层结束切换方向
			res.push_back(vector<int>(level.begin(), level.end()));
		}
		return res;
	}
};

4.N叉树的层次遍历

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        vector<vector<int>> res;
        if(root == nullptr) return res;
        queue<Node*> q;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            vector<int> level;
            for(int i = 0; i < size; i ++){
                Node* cur = q.front();
                q.pop();
                level.push_back(cur->val);
                for(Node* child : cur->children) q.push(child);
            }
            res.push_back(level);
        }
        return res;
    }
};

5.二叉树的最近公共祖先

    // 1. 先看根节点是不是祖先
    if(root==null || root==p || root==q){
        return root;
    }

    // 2. 如果根节点是祖先,有没有更近的祖先呢
    // 看看左子树
    TreeNode left = lowestCommonAncestor(root.left, p, q);
    // 看看右子树
    TreeNode right = lowestCommonAncestor(root.right, p, q);

    // 3. 如果有的话显然只会在一侧 判断一下
    if(left==null){
        return right;
    }
    if(right==null){
        return left;
    }

    // 4. 如果没有更近的,默认还是返回root
    return root;
}

6.二叉搜索树的最近公共祖先

  1. 如果p和q都比当前节点小,那么p和q显然都在左子树
  2. 如果p和q都比当前节点大,那么p和q显然都在右子树
  3. 一旦发现p和q都在当前节点两侧,那么当前节点就是
class Solution{
public:
	TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q){
		if(root == nullptr) return nullptr;
		if(p->val > q->val) return lowestCommonAncestor(root, q, p);// 保证p.val < q.val,便于讨论
		if(root->val >= p->val && root->val <= q->val) return root;
		if(root->val > q->val) return lowestCommonAncestor(root->left, p, q);// p和q都在左子树
        else return lowestCommonAncestor(root->right, p, q);//其余条件都排除了,只剩root.val < p.val这一个,所以这个else是安全的
    }
		
};

7.二叉树的直径

所谓二叉树的直径,就是左右子树的最大深度之和。
那么直接想法是对每个节点计算左右子树的最大高度,得出每个节点的直径,从而得出最大的那个直径。

class Solution {
public:
    int maxDiameter = 0;  // 存储最大直径

    int diameterOfBinaryTree(TreeNode* root) {
        maxdepth(root);  // 调用辅助函数
        return maxDiameter;  // 返回已计算的最大直径
    }

    int maxdepth(TreeNode* root) {
        if (root == nullptr) return 0;  // 空节点的深度为0

        int leftMax = maxdepth(root->left);  // 左子树的最大深度
        int rightMax = maxdepth(root->right);  // 右子树的最大深度

        int myDiameter = leftMax + rightMax;  // 经过当前节点的最长路径长度

        maxDiameter = max(maxDiameter, myDiameter);  // 更新全局最大直径

        return max(leftMax, rightMax) + 1;  // 返回节点的最大深度
    }
};

maxdepth 函数最后返回 max(leftMax, rightMax) + 1 是为了:

  1. 计算当前节点的最大深度,以便于父节点计算其最大深度。
  2. 更新整个二叉树的直径,即最长路径的长度。

8.二叉树中最大路径和

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。

路径和 是路径中各节点值的总和。

给你一个二叉树的根节点 root ,返回其 最大路径和 。
在这里插入图片描述oneSideMax 函数和上述几道题中都用到的 maxDepth 函数非常类似,只不过 maxDepth 计算最大深度,oneSideMax 计算「单边」最大路径和,只记录左子树或者右子树最大路径和,然后在后序遍历的时候顺便计算题目要求的最大路径和。

class Solution{
public:
	int res = INT_MIN;
	int maxPathSum(TreeNode* root){
		if(root == nullptr) return 0;
		oneSideMax(root);
		return res;
	}
	int oneSideMax(TreeNode* root){
		if(root == nullptr) return 0;
		int leftMaxSum = max(0, oneSideMax(root->left));
		int rightMaxSum = max(0, oneSideMax(root->right));

		int pathMaxSum = root->val + leftMaxSum + rightMaxSum;
		res = max(res, pathMaxSum);
		
		return root->val + max(leftMaxSum, rightMaxSum);
}

9.二叉树的中序遍历

创建一个栈来保存遍历过程中的节点,首先尽可能将节点的左子节点入栈,直到左子节点不存在为止。当左子节点访问完毕后,从栈中弹出一个节点,访问该节点(输出节点值),然后转向访问该节点的右子节点。

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode*> stk;
        while (root != nullptr || !stk.empty()) {
            while (root != nullptr) {
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            res.push_back(root->val);
            root = root->right;
        }
        return res;
    }
};

10.从前序与中序遍历序列构造二叉树

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。
在这里插入图片描述
构造二叉树,第一件事一定是找根节点,然想办法构造左右子树。前序遍历的第一个结果就是根节点的值,然后再根据中序遍历结果确定左右子树的节点。

class Solution {
    // 存储 inorder 中值到索引的映射,找根节点在 inorder 中的位置
    unordered_map<int, int> valToIndex;
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
    	for(int i = 0; i < inorder.size(); i ++) valToIndex[inorder[i]] = i;
    	return build(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
    }
private:
	TreeNode* build(vector<int>& preorder, int preStart, int preEnd, vector<int>& inorder, int inStart, int inEnd){
		if(preStart > preEnd) return nullptr;
		int rootVal = preOrder[preStart];
		int index = valToIndex[rootVal];
		int leftSize = index - inStart;

		//构造当前根节点
		TreeNode* root = new TreeNode(rootVal);
		//递归构造左右子树
		root->left = build(preorder, preStart + 1, preStart + leftSize, inorder, inStart, index - 1);
		root->right = build(preorder, preStart + leftSize + 1, preEnd, inorder, index + 1, inEnd);
		return root;

11.从中序与后序遍历序列构造二叉树

给inorder和postorder数组,其中inorder是二叉树中的中序遍历,postorder是同一棵树的后序遍历。
在这里插入图片描述

class Solution {
public:
    unordered_map<int, int> valToIndex;
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        for(int i = 0; i < inorder.size(); i ++) valToIndex[inorder[i]] = i;
        return build(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
    }
    TreeNode* build(vector<int>& inorder, int inPre, int inEnd, vector<int>& postorder, int postPre, int postEnd){
        if(postPre > postEnd) return nullptr;
        int rootVal = postorder[postEnd];
        int index = valToIndex[rootVal];
        int leftsize = index - inPre;
        TreeNode* root = new TreeNode(rootVal);
        root->left = build(inorder, inPre, index - 1, postorder, postPre, postPre + leftsize - 1);
        root->right = build(inorder, index + 1, inEnd, postorder, postPre + leftsize, postEnd - 1);
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值