LCA(最近公共祖先)解法模板,附有详细代码注释
我们知道,最近公共祖先是指有根树上找出任意两个节点,u,v的最近的公共祖先。
这是洛谷的模板题:
最近公共祖先LCA
解释都在代码里:
树上倍增
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0)
#define ull unsigned ll
#define uint unsigned
#define pai pair<int,int>
#define pal pair<ll,ll>
#define IT iterator
#define pb push_back
#define fi first
#define se second
#define For(i,j,k) for (int i=(int)(j);i<=(int)(k);++i)
#define Rep(i,j,k) for (int i=(int)(j);i>=(int)(k);--i)
#define endl '\n'
#define ll long long
const int N=500010;
int head[N],tot;
struct node
{
int to,nxt;
}tree[N<<1];//定义节点
void add(int x,int y)
{
tree[++tot].to=y;
tree[tot].nxt=head[x];
head[x]=tot;
}//链式前向星存图
int depth[N];//depth数组用来存每一个节点的深度;
int fa[N][20];//fa[i][j]表示节点i的2^j级祖先;
int lg[N];//倍增遍历的lg数组;
void dfs(int now,int fath)//now表示当前节点,fath表示它的直接父亲节点
{
fa[now][0]=fath;//当前节点的父亲;
depth[now]=depth[fath]+1;//当前节点的深度就是父亲节点的深度+1;
for(int i=1;i<lg[depth[now]];++i)
{
fa[now][i]=fa[fa[now][i-1]][i-1];//实际上是一个小递归,就是一个节点的2^i级祖先为它的2^i级祖先的2^i级祖先;
}
for(int i=head[now];i;i=tree[i].nxt)
{
if(tree[i].to!=fath)
dfs(tree[<