LCA两种在线解法(RMQ+欧拉序、树上倍增)模板

LCA(最近公共祖先)解法模板,附有详细代码注释

我们知道,最近公共祖先是指有根树上找出任意两个节点,u,v的最近的公共祖先。
这是洛谷的模板题:
最近公共祖先LCA
解释都在代码里:

树上倍增
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0)
#define ull unsigned ll
#define uint unsigned
#define pai pair<int,int>
#define pal pair<ll,ll>
#define IT iterator
#define pb push_back
#define fi first
#define se second
#define For(i,j,k) for (int i=(int)(j);i<=(int)(k);++i)
#define Rep(i,j,k) for (int i=(int)(j);i>=(int)(k);--i)
#define endl '\n'
#define ll long long
const int N=500010;
int head[N],tot;
struct node
{
   
    int to,nxt;
}tree[N<<1];//定义节点
void add(int x,int y)
{
   
    tree[++tot].to=y;
    tree[tot].nxt=head[x];
    head[x]=tot;
}//链式前向星存图
int depth[N];//depth数组用来存每一个节点的深度;
int fa[N][20];//fa[i][j]表示节点i的2^j级祖先;
int lg[N];//倍增遍历的lg数组;

void dfs(int now,int fath)//now表示当前节点,fath表示它的直接父亲节点
{
   
    fa[now][0]=fath;//当前节点的父亲;
    depth[now]=depth[fath]+1;//当前节点的深度就是父亲节点的深度+1;
    for(int i=1;i<lg[depth[now]];++i)
    {
   
        fa[now][i]=fa[fa[now][i-1]][i-1];//实际上是一个小递归,就是一个节点的2^i级祖先为它的2^i级祖先的2^i级祖先;
    }
    for(int i=head[now];i;i=tree[i].nxt)
    {
   
        if(tree[i].to!=fath)
            dfs(tree[<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值