方法一:回溯
首先使用哈希表存储每个数字对应的所有可能的字母,然后进行回溯操作
回溯过程中维护一个字符串,表示已有的字母排列(如果未遍历完电话号码的所有数字,则已有的字母排列是不完整的)。该字符串初始为空。每次取电话号码的一位数字,从哈希表中获得该数字对应的所有可能的字母,并将其中的一个字母插入到已有的字母排列后面,然后继续处理电话号码的后一位数字,直到处理完电话号码中的所有数字,即得到一个完整的字母排列。然后进行回退操作,遍历其余的字母排列
回溯算法用于寻找所有的可行解,如果发现一个解不可行,则会舍弃不可行的解。在这道题中,由于每个数字对应的每个字母都可能进入字母组合,因此不存在不可行的解,直接穷举所有的解即可
class Solution
{
public:
vector<string> letterCombinations(string digits)
{
vector<string> vs;
if (digits.empty())
{
return vs;
}
unordered_map<char, string> map
{
{'2', "abc"},
{'3', "def"},
{'4', "ghi"},
{'5', "jkl"},
{'6', "mno"},
{'7', "pqrs"},
{'8', "tuv"},
{'9', "wxyz"}
};
string s;
backtrack(std::ref(vs), std::ref(map), std::ref(digits), 0, std::ref(s));
return vs;
}
void backtrack(vector<string>& vs, const unordered_map<char, string>& map,
const string& digits, int index, string& s)
{
if (index == digits.length())
{
vs.push_back(s);
}
else
{
char digit = digits[index];
const string& letters = map.at(digit);
for (const char& letter : letters)
{
s.push_back(letter);
backtrack(std::ref(vs), std::ref(map), std::ref(digits), index + 1, std::ref(s));
s.pop_back();
}
}
}
};
时间复杂度:O(3 ^ m * 3 ^ 4 ),其中 m 是输入中对应 3 个字母的数字括数字 2、3、4、5、6、8),n 是输入中对应 4 个字母的数字个数(包括数字 7、9),m+n 是输入数字的总个数。当输入包含 m 个对应 3 个字母的数字和 n 个对应 4 个字母的数字时,不同的字母组合一共有 3 ^ m * 3 ^ 4 种,需要遍历每一种字母组合
空间复杂度:O(m+n),其中 m 是输入中对应 3 个字母的数字个数,n 是输入中对应 4 个字母的数字个数,m+n 是输入数字的总个数。除了返回值以外,空间复杂度主要取决于哈希表以及回溯过程中的递归调用层数,哈希表的大小与输入无关,可以看成常数,递归调用层数最大为 m+n